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Many construction activities can put workers at risk of breathing silica containing dusts, and 
there is an important body of literature documenting exposure levels using a task-based strat-
egy. In this study, statistical modeling was used to analyze a data set containing 1466 task-
based, personal respirable crystalline silica (RCS) measurements gathered from 46 sources to 
estimate exposure levels during construction tasks and the effects of determinants of exposure. 
Monte–Carlo simulation was used to recreate individual exposures from summary param-
eters, and the statistical modeling involved multimodel inference with Tobit models containing 
combinations of the following exposure variables: sampling year, sampling duration, construc-
tion sector, project type, workspace, ventilation, and controls. Exposure levels by task were 
predicted based on the median reported duration by activity, the year 1998, absence of source 
control methods, and an equal distribution of the other determinants of exposure. The model 
containing all the variables explained 60% of the variability and was identified as the best 
approximating model. Of the 27 tasks contained in the data set, abrasive blasting, masonry 
chipping, scabbling concrete, tuck pointing, and tunnel boring had estimated geometric means 
above 0.1 mg m−3 based on the exposure scenario developed. Water-fed tools and local exhaust 
ventilation were associated with a reduction of 71 and 69% in exposure levels compared with 
no controls, respectively. The predictive model developed can be used to estimate RCS concen-
trations for many construction activities in a wide range of circumstances.

Keywords: construction industry; crystalline silica; monte carlo simulation; multi-model inference; task-based 
assessment

Introduction

Occupational exposure to respirable crystalline silica 
(RCS) containing dust is linked with chronic lung dis-
eases such as silicosis (Leung et al., 2012) and lung 
cancer (IARC, 2012). The number of workers poten-
tially exposed to RCS is estimated at over 3 million 

in the European Union, 1.7 million in the USA, and 
350 000 in Canada (NIOSH, 2002; Peters et al., 2012). 
Since the 1990s, the construction sector has been the 
focus of several studies and initiatives to identify fac-
tors associated with RCS exposure (Linch and Cocalis, 
1994; Madl et al., 2008), as crystalline silica is a con-
stituent of numerous building materials such as con-
crete, rock, brick, and sand (Moore, 1999; NIOSH, 
2002). Studies by Lumens and Spee (2001), Rappaport 
et al. (2003), and Flanagan et al. (2006), among others, 
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have highlighted the extent and sources of overexpo-
sure for many construction trades and tasks.

The evaluation of exposure to RCS in the con-
struction industry remains challenging due to the 
important variability in exposure determinants such 
as tasks, materials, and worksite characteristics, 
among others. Construction sites involve a variety 
of constantly changing operations and specialized 
workers (Chisholm, 1999), and the duration of expo-
sure within a work shift can vary depending on the 
activities performed (Valiante et  al., 2004). Many 
studies (e.g. Chisholm, 1999; Verma et  al., 2003; 
Tjoe Nij et al., 2004) have sampled a limited num-
ber of workers and have cautioned against general-
izing their results to the entire industry. Despite the 
impressive number of measurements contained in 
their RCS exposure database, Flanagan et al. (2006) 
concluded that additional research is necessary to 
identify factors contributing to high exposure levels.

In order to identify circumstances associated with 
hazardous levels of RCS and document the effective-
ness of engineering controls, an occupational expo-
sure database of RCS exposure in the construction 
industry was developed by Beaudry et al. (in press). 
This database was compiled from measurements of 
RCS and associated determinants reported in the 
published literature of the last 25 years. It contains 
measurements of dust and crystalline silica in vari-
ous fractions such as respirable and inhalable, sam-
pled under different strategies (e.g. task-based and 
compliance assessment).

Occupational exposure limits to RCS are set as 
time-weighted averages (over 8 or 10 h) in most 
jurisdictions (Maciejewska, 2008). However, some 
studies (e.g. Greenspan et al., 1995; Goldberg et al., 
1997; Susi et al., 2000; Kerr et al., 2002) have used 
a task-based exposure assessment strategy for noise 
and contaminants associated with construction work 
to improve the characterization of exposure determi-
nants and provide guidance in the selection of appro-
priate control methods.

The objectives of this study were to estimate RCS 
exposure levels associated with tasks performed in 
the construction industry and to quantify the effect 
of other determinants and exposure control methods, 
using the database constructed by Beaudry et al. (in 
press).

Methods

Exposure database

The database was constructed following an exten-
sive literature review of crystalline silica exposure 

data published between 1987 and 2009. While docu-
menting exposure levels during abrasive blasting was 
outside the scope of the data compilation project, 
some results for this task were entered in the data-
base when found alongside RCS exposure data for 
other construction activities. The database comprises 
6118 records of crystalline silica and dust expo-
sure in various forms and fractions, gathered from 
115 sources of data. These sources include scien-
tific papers, survey reports (such as NIOSH Health 
Hazard Evaluations) and existing databases provided 
by Flanagan et al. (2006) and the French Institut de 
Veille Sanitaire, the latter forming the basis of a job-
exposure matrix (InVS, 2011). Each record in the 
database represent a single measurement, or a set 
of measurements summarized by statistical param-
eters—i.e. 2 or more measurements summarized 
and reported as a geometric mean (GM) and stand-
ard deviation (GSD), arithmetic mean or range. The 
combined sample size of the individual and summa-
rized data represents 11 845 measurements.

Ancillary information in this database includes several 
parameters describing exposure determinants (e.g. trade, 
task, construction sector, tool, and material) and sampling 
methodology (e.g. sampling duration, strategy, loca-
tion—personal, area or source—and analytical method). 
The task-based strategy was attributed to exposure results 
associated with a task or a group of tasks in the source 
of data, irrespective of sampling duration. The trade, task, 
tool, and material descriptions were entered in the data-
base as they were reported in the source of data. In addi-
tion, the database includes a standardized classification of 
these variables to facilitate their analysis. For instance, the 
tasks descriptions of “Removing mortar between bricks,” 
“Grinding mortar between bricks,” “Mortar removal,” 
“Tuckpointing,” and “Tuck pointing” were coded as 
“Tuck pointing” in the harmonized task description vari-
able. A detailed description of the database construction 
process and the information contained within can be 
found in Beaudry et al. (in press).

Database preparation

The data were selected from records of personal 
RCS exposure associated with the task-based sam-
pling strategy in the database. Records with missing 
task descriptions, and those with two or more tasks 
reported to be performed within the sampling period 
were excluded. We also excluded measurements 
made with direct-reading equipment and missing 
sampling duration. Results from experimental stud-
ies investigating the effectiveness of engineering 
control methods in a laboratory setting were deemed 
less representative of field conditions and excluded 
from the analysis.
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The original intent of this study was to evaluate the 
effect of tasks, tools, and materials separately. However, 
the lack of documentation for tools and materials (for 
29 and 25% of the records of the database) and their 
strong correlation with the task performed prevented 
their inclusion in the analysis as separate variables. 
Nevertheless, two task categories were associated with 
different tools and materials and enough data points to 
allow for a more refined analysis. Thus, the chipping 
task was broken down into three categories based on 
the tools used (jackhammer, other tools, and multiple 
tools including jackhammer), while the drilling task 
was separated into three categories based on the mate-
rial (concrete, rock, and soil and rock).

The initial database contains precise descriptions 
for the tasks and associated determinants. However, 
some of the categories had to be grouped to ensure a 
sufficient sample size for the statistical analysis. Each 
category had to be associated with a minimum of 10 
measurements. Moreover, for categories containing 
summarized data, the available data had to come from 
at least two different records. New task categories 
created include “Foundation tasks not elsewhere clas-
sified (n.e.c.),” “Excavation tasks n.e.c.,” “Roadwork 
tasks n.e.c.,” and “Masonry tasks n.e.c.” For control 
methods, source isolation and the combination of 
more than one control method were merged in a new 
category labeled “other.” Industrial and commercial 
construction sector categories were combined, and 
the workspace categories were grouped on the basis 
of work performed either indoors or outdoors. The 
“other” and “unreported” categories for the construc-
tion sector, project type, and source control methods 
were combined prior to the statistical modeling.

Summarized exposure levels

In order to include both individual and summa-
rized exposure data in the analysis, each set of sum-
mary parameters were processed as described in 
Lavoué et al. (2007). First, summarized results not 
reported as a GM and GSD were transformed to 
these parameters, assuming a log-normal distribu-
tion of the exposure profile. Individual exposures 
were then simulated from the log-transformed GM 
and GSD using equation 1, where Z is a random 
value from the standard normal distribution.

	 x= ( )( + × ( ) )exp ln lnGM Z GSD 	 (1)

Each summarized record was replaced by a num-
ber of simulated exposures equal to the reported 
sample size, while the associated exposure variables 
remained unchanged. As an illustration, for a GM and 
GSD associated with a reported sample size of 10, 

10 individual concentrations would be generated and 
coupled with identical exposure determinants. The 
simulated data were then combined with the other 
individual measurements prior to their analysis. Due 
to the variation inherent to the random simulation 
procedure, repeating this process yields identical sin-
gle measurements and different simulated exposure 
values derived from the summary parameters.

Descriptive statistics

The GM and GSD for each level of categorical 
determinant listed in Table 1 were computed using 
robust regression on order statistics (ROS; Helsel, 
2005) to account for nondetects. This method applies 
a linear regression between the detected measure-
ments (following a log-transformation in our analy-
sis) and their normal quantiles in order to model the 
censored observations. The summary statistics are 
then computed based on the combined detected and 
modeled data. The GMs and GSDs were computed 
using 100 iterations of the simulation procedure, 
with their median values taken as the final estimate. 
Variability across the 100 iterations was assessed by 
computing relative standard deviations (RSD).

Statistical modeling

Statistical modeling was performed using a multi-
model averaging approach (Burnham and Anderson, 
2002), recently applied in occupational health stud-
ies (Lavoué and Droz, 2009). As the name implies, 
inference in this approach is based on a set of can-
didate models (the model set), instead of a single 
“final” model obtained by adding and removing var-
iables. Multimodel inference thus does not assume 
that a single model is useful, and allows to a certain 
extent to account for model selection uncertainty 
(Raftery et al., 1997).

The model set was constructed by first creating 
models containing all possible presence/absence 
combinations of the variables found in Table  1, as 
well as sample year and sampling duration. As the 
main focus of this study was to estimate the effect 
of tasks and control methods, these two variables 
were included in all the models. This resulted in a 
preliminary list of 64 unique model structures. The 
presence of dilution ventilation in the database was 
entered as a dichotomous “yes/no” and did not dis-
criminate between mechanical ventilation for inte-
rior workspace and the presence of significant wind 
in exterior settings. An interaction between work-
space and ventilation was thus included to account 
for differences between industrial ventilation indoors 
and wind outdoors, adding 16 model structures for a 
final model set size of 80 models.
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Table 1.  RCS concentrations, proportion of nondetects and measurements derived from summary statistics and median sampling 
durations by exposure variable.

Variable N GMa  
(mg m−3)

GSDb RSDc  
(%)

NDd  
(%)

SSe  
(%)

Durationf  
(min)

Total 1466 0.050 8.7 3 6 71 334

Task

Chipping—multiple tools (including jackhammer) 88 0.941 4.7 13 6 93 210

Abrasive blasting 23 0.805 6.3 22 4 61 315

Chipping—jackhammer 56 0.460 2.7 0 7 0 81

Scabbling concrete 12 0.441 3.1 0 50 0 5

Tunnel boring 45 0.328 3.3 12 0 91 390

Tuck pointing 82 0.256 7.7 5 12 12 256

Chipping—other tools 21 0.126 7.4 0 10 0 104

Masonry cutting 81 0.101 4.7 8 5 56 210

Pick and shovel work 11 0.086 2.6 0 9 0 212

Surface grinding/finishing 213 0.071 8.6 6 0 99 309

Moving soil/rock with heavy equipment 13 0.066 4.0 0 8 0 120

Drilling—concrete 45 0.058 10 12 31 36 390

Sanding 31 0.047 7.2 0 42 0 185

Demolition 32 0.032 6.1 36 0 97 334

Drilling—rock 122 0.030 3.9 11 0 98 390

Masonry tasks n.e.c. 14 0.025 4.4 12 0 50 255

Asphalt/concrete road milling 40 0.023 2.8 0 10 0 218

Drilling—soil and rock 13 0.020 6.5 53 15 62 283

Concrete spraying 94 0.018 3.5 12 0 87 390

Roadwork tasks n.e.c. 47 0.018 3.8 9 6 51 350

Installing concrete forms 159 0.015 5.5 9 0 98 390

Electrical maintenance 41 0.013 2.5 13 0 100 390

Concrete/mortar mixing 26 0.012 4.5 13 19 50 336

Cleaning up 15 0.012 3.8 38 0 100 390

Cutting/installing ceiling tiles 42 0.011 7.5 23 45 50 320

Excavation tasks n.e.c. 56 0.010 4.1 17 0 100 341

Foundation tasks n.e.c. 44 0.008 2.9 13 0 100 356

Construction sector

Residential 35 0.126 5.0 0 37 0 81

Industrial and commercial 161 0.083 8.6 5 19 34 75

Civil engineering and roadwork 838 0.021 5.4 4 3 89 380

Other/unreported 432 0.219 7.8 4 7 55 210

Project type

Renovation 194 0.072 9.2 2 21 6 221

New construction 823 0.023 5.8 4 1 97 390

Other/unreported 449 0.185 8.2 3 10 51 210

Workspace

Enclosed/indoors 583 0.042 6.5 4 9 73 390

Open/exterior 670 0.036 9.0 3 5 65 304

Unreported 213 0.231 9.1 7 3 84 210

Ventilation

No 474 0.204 7.1 3 10 49 185

Yes 535 0.025 6.0 5 1 91 390

Unreported 457 0.027 7.7 5 9 70 324

Controls (source)

LEV 117 0.092 6.4 4 11 36 90

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/57/4/432/158181 by guest on 09 April 2024



436	 J-F. Sauvé et al.

Further data preparation prior to modeling 
included log-transformation of the RCS concentra-
tions due to the positive skew of their distribution. 
The sampling duration was also log-transformed and 
the sampling year was normalized by subtracting the 
earliest sampling year of the data set. For nominal 
variables, the categories with the largest sample size 
were selected as the reference levels.

The relative quality of models in multimodel infer-
ence is assessed by the computation of model weights 
calculated from a goodness-of-fit criterion—in this 
analysis, a modified Akaike information criterion 
with a second-order correction (AICc) [equation 
provided in page  66 of Burnham and Anderson 
(2002)]. The “Akaike weights” are based on the rela-
tive difference in AICc values between each model 
and the model with the lowest AICc, and add up to 1 
(Burnham and Anderson, 2002). Each weight can be 
seen as the probability of the corresponding model 
being the best approximating model given the model 
set and the data. The weights can be used to rank 
models, quantify the relative importance of explana-
tory variables through the computation of evidence 
ratios (Lukacs et  al., 2007), and estimate averaged 
model coefficients and predictions. The multimodel 
coefficients were computed as weighted averages 
based on the Akaike weights and parameter values 
across the models in the set, with a value of 0 taken 
for the coefficients of a variable absent from a model.

The evidence ratios were computed by dividing 
the sum of the weights of the models containing a 
variable of interest by the sum of the weights for the 
models without it. An evidence ratio of 100 or more 
indicates strong support for a variable being associ-
ated with the response. Conversely, an evidence ratio 
below 0.01 suggests that the variable has little influ-
ence on the response (Lukacs et al., 2007).

Tobit models (Lubin et al., 2004) were used to account 
for measurements reported as below the limit of detec-
tion (LOD). In order to estimate the proportion of vari-
ance explained by the full model, a measure frequently 
reported in modeling studies, the coefficient of deter-
mination (R2) was computed by fitting a linear model 
containing all the variables and the interaction to the 
RCS concentrations with nondetects replaced by LOD/2 
(Hornung and Reed, 1990). The substitution of nonde-
tects and use of linear model in this instance was due to 
the lack of consensus on the appropriate method used to 
estimate the proportion of variance explained with Tobit 
models (Choodari-Oskooei et al., 2012). The modeling 
procedure was applied to 20 iterations of the simulation 
procedure to account for the variations related to the 
imputation of individual exposures from summary statis-
tics. The mean value of the multimodel averaged regres-
sion coefficients across the replications was used as the 
estimate, while the variability between the iterations was 
assessed by computing the RSD for each coefficient.

Relative indices of exposure (RIE; Lavoué et al., 
2005) were calculated from the estimated coef-
ficients to illustrate the effects on exposure of the 
various levels of categorical determinants relative to 
the reference category. A category with a RIE below 
100% is associated with reduced exposure levels 
compared with the reference category, while a larger 
RIE indicates the opposite effect.

Exposure levels by task were predicted based on 
the median sampling year of the data set, and the 
median sampling duration associated with each task. 
The exposure scenario developed also assumed an 
equal distribution of the other reported determinants 
of exposure—for instance, work being performed 
50% indoors and 50% outdoors. As a first excep-
tion to this rule, predictions were made by assum-
ing no source control since the different types of 

Variable N GMa  
(mg m−3)

GSDb RSDc  
(%)

NDd  
(%)

SSe  
(%)

Durationf  
(min)

Total 1466 0.050 8.7 3 6 71 334

None 726 0.078 9.7 3 3 79 360

Water-fed tool 52 0.071 3.6 5 19 21 204

Manual spraying 100 0.019 4.5 13 6 89 390

Other/unreported 471 0.025 7.4 5 10 68 324

aMedian value of the geometric mean (GM) with robust regression on order statistics from the 100 iterations.
bMedian value of the geometric standard deviation (GSD) with regression on order statistics from the 100 iterations.
cRelative standard deviation (RSD) of the geometric means across the 100 iterations.
dPercentage of values reported as nondetects (ND).
ePercentage of values simulated from summary statistics (SS).
fMedian of the reported sampling duration in minutes.
n.e.c., not elsewhere classified, LEV, local exhaust ventilation

Table 1.  Continued
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control methods were not applicable for some tasks, 
such as cleaning up or material handling. The other 
exceptions were for tasks associated only with spe-
cific work conditions in the data set. These include 
asphalt/concrete road milling, other excavation and 
other foundation for outdoor work and civil engineer-
ing construction sector, and tunnel boring for indoor 
work and civil engineering construction sector.

Data analysis was performed with the R 2.14 
software, using the packages NADA (Lee, 2012) to 
compute descriptive statistics using the ROS method, 
and survival (Therneau and Lumley, 2012) for Tobit 
models.

Results

Descriptive statistics

The data set comprised 1466 measurements 
derived from 480 records and sourced from 46 differ-
ent publications, encompassing 27 task categories. 
430 records were single measurements, including 
94 nondetects. The median total GM and GSD over 
the combined single and simulated data, based on 
100 iterations, were 0.050 mg m−3 (RSD 3%) and 
8.7 (RSD 2%), respectively. The median sampling 
year of the data set was 1998 (range 1988–2007) 
and the median sampling duration was 334 min 
(range 4–734, interquartile interval 210–390). Only 
87 measurements (6%) were associated with higher 
flow (4.2 l min−1) samplers.

The sample sizes, median GMs and GSDs, RSDs 
of the GMs across the 100 iterations, proportion of 
nondetects, and simulated values and median sam-
pling duration for each level of the categorical vari-
ables are listed in Table 1. The largest median GM 
for tasks was found for chipping—multiple tools 
(including jackhammer; 0.941 mg m−3, n = 88), fol-
lowed by abrasive blasting (0.805 mg m−3, n = 23). 
The GSDs for the task categories ranged from 2.5 
(electrical maintenance) to 10 (drilling—concrete) 
with a median of 4.4. Four tasks had a median sam-
pling duration of less than 3 h, the shortest being 
scabbling concrete, with a median of 5 min, followed 
by chipping—jackhammer with 81 minutes.

The median RSD across the 20 task categories 
containing individual exposures simulated from 
summary parameters was 13% (interquartile inter-
val 10–18%), while the RSDs for the other determi-
nants were generally lower with a median of 4%. The 
three tasks with the largest variation in the estimated 
GMs between the 100 iterations as assessed by the 
RSDs were drilling soil and rock (53%), cleaning up 
(38%), and demolition (36%).

Statistical modeling

The mean percentage of variance explained by the 
model containing all the variables and the interac-
tion between workspace and ventilation (i.e. the 
“full” model) was 60% (range 58–62%) across rep-
lications, with a mean residual GSD of 3.9 (range 
3.8–4.1). In the multimodel approach, the coeffi-
cients were based on only two model structures: the 
full model, with a mean weight of 0.94 across the 
20 iterations, followed by the same structure with-
out the project type variable (mean weight of 0.06). 
Evidence ratios for all variables were very high 
(above 105), with the exception of project type (81). 
The estimated model parameters averaged across the 
20 iterations and their RSDs are presented in Table 
A1 in the Appendix. The median RSD of the model 
coefficients was 13% (interquartile interval 8–22%).

Effects of exposure determinants

An increase of 50% in sampling duration (e.g. 
from 30 to 45 min, or from 2 to 3 h) was associated 
with a 19% reduction [95% approximate confidence 
interval (CI) 13–25%] in RCS concentrations. The 
annual trend consisted of an 11% decrease (95% CI 
6–15%) per year in exposure levels. The RIEs for 
construction sector, project type, and source-based 
control method categories are presented in Table 2. 
For the latter, local exhaust ventilation (LEV) (RIE 
31%, 95% CI 22–44%) and water-fed tools (RIE 
29%, 95% CI 15–54%) were associated with the 
largest estimated reductions in exposure levels com-
pared with uncontrolled operations.

The interaction between workspace and general 
ventilation was associated with four combinations 
(excluding those involving the categories labeled 

Table 2.    RIE of construction sectors, project types and 
source control methods.

Variable RIE (%) (95% CI)

Construction sector

Residential 127 (57–283)

Industrial and commercial 56 (33–95)

Civil engineering and roadwork Referencea

Project type

Renovation 91 (55–152)

New construction Reference

Controls (source)

LEV 31 (22–44)

None Reference

Water-fed tool 29 (15–54)

Manual spraying 43 (23–79)

aRelative indices of exposure (RIE) of the reference levels 
taken as 100%. LEV, local exhaust ventilation.
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“unreported”), with the combination of outdoors with 
ventilation (i.e. wind) set as the reference level. The 
combination of outdoors without wind was associated 
with a 38-fold increase in exposure levels compared 
with the reference. The effects for work performed 
indoors were a 18-fold increase relative to the reference 
combination of exterior with wind, both with (95% CI 
12–26) and without (95% CI 10–33) ventilation.

Estimated exposure levels by task

The estimated exposure levels by task, based on 
the median duration by category, year 1998 and with-
out source controls are presented in Fig. 1. The larg-
est predicted GMs were found for scabbling concrete 
(0.728 mg m−3), chipping—multiple tools (includ-
ing jackhammer; 0.591 mg m−3), and tunnel boring 
(0.266 mg m−3).

Abrasive blasting (0.191 mg m−3), tuck point-
ing (0.190 mg m−3), and chipping—jackhammer 
(0.173 mg m−3) were the other tasks with a mean pre-
dicted GM over 0.1 mg m−3 based on their median 
sampling durations. Fifteen of the 27 task categories 
had an estimated GM under 0.025 mg m−3, including 

most of the support/ancillary tasks (e.g. material 
handling and mixing, installing concrete forms, 
cleaning up, and electrical maintenance).

Discussion

Our study is based on existing exposure data com-
piled from an extensive literature review, with 27 
task categories and 1466 individual task-based expo-
sure measurements. Our data set covered a broader 
range of construction activities compared with the 16 
task categories analyzed by Flanagan et al. (2006). 
The time period covered in our data set was also 
longer (1988–2007, compared with 1992–2002) and 
included data from European countries and Canada. 
We estimate that only 2% of the exposure data is 
shared between the two studies. The majority of 
the measurements provided by Flanagan et al. were 
associated with the strategy of evaluating regulatory 
compliance during the construction of our database. 
These, along with other measurements comparing 
exposure levels to occupational exposure limits, 
were analyzed separately (Sauvé et al., 2012). The 27 

Fig. 1.  Estimated geometric mean respirable crystalline silica exposure by task, based on the median sampling  
duration by task, year 1998 and absence of source controls, averaged across 20 iterations.
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tasks categories in our data set encompassed many 
activities that involves direct disturbance of build-
ing materials containing crystalline silica—such 
as grinding and drilling—and also those of a sup-
port nature (e.g. cleaning up and material handling). 
The range of construction activities covered in our 
analysis should allow for an improved assessment of 
work-shift exposures based on the nature and dura-
tion of individual tasks.

Descriptive statistics

The total median GM in this study (0.050 mg 
m−3) was lower than the total GM of the database of 
Flanagan et  al. (2006; 0.13 mg m−3). This is likely 
due to the large proportion of the data compiled by 
Flanagan et al. being results from legal compliance 
evaluations, which were excluded from our analysis. 
Of the three data sources in their database, the meas-
urements from regulatory agencies had the highest 
GM compared with research or private organizations.

Most tasks in our data set were associated with 
median sampling times of several hours, which 
might seem counterintuitive in some cases when 
considering the time necessary to perform a task only 
once (e.g. sawing a concrete block). This reflects 
situations where workers were performing the tasks 
repeatedly during the sampling period. Our results in 
these cases therefore represent exposure levels asso-
ciated with performing a task during part of a shift as 
opposed to a single task unit.

Regarding the variability associated with the 
simulation procedure in the estimation of GMs for 
categorical determinants, the RSDs were generally 
below 20% for the task categories and 10% for the 
other determinants. These results are comparable 
to those reported by Lavoué et  al. (2007) in their 
analysis of formaldehyde exposure data from the lit-
erature, with a larger proportion of simulated meas-
urements (83 and 85%, compared with 71% in our 
study) and using 1000 iterations. The variation in the 
estimated GMs did not appear to be associated with 
the proportion of measurements derived from sum-
mary statistics in the different categories. Our results 
thus suggest that relatively precise estimates of the 
GMs can be obtained with 100 replications regard-
less of the proportion of simulated measurements.

Statistical modeling

The model containing all the variables and the 
interaction explained an important proportion of 
the variability in exposure levels with a mean R2 of 
60%, which is comparable to many determinants of 
exposure studies reviewed by Burstyn and Teschke 

(1999). Compared with our study, the modeling of 
the respirable quartz measurements by Flanagan 
et al. (2006) resulted in a R2 value of 29%, but the 
final model did not contain the task variable. Our 
result is more comparable to a determinants of expo-
sure study by Lumens and Spee (2001) investigating 
four construction trades with models explaining 64 
to 82% of the variability in respirable quartz con-
centrations, depending on the model and population.

The results for the multimodel approach indi-
cated that the computation of model coefficients 
and predictions were overwhelmingly based on the 
model containing all the variables (i.e. this model 
had an Akaike weight very close to 1). This suggests 
that a simpler, traditional approach (e.g. backward 
stepwise) to model selection would have yielded 
similar results, and that the advantages of the mul-
timodel procedure (e.g. integrating the contribution 
of equally plausible models) are less apparent here. 
However, we did not know that this would be the case 
and post hoc selection of the modeling approach is 
generally discouraged (Burnham and Anderson, 
2002).

Despite the important proportion of variability 
explained by the full model, its residual GSD of 3.9 
suggests that other factors affecting exposure were 
unaccounted for in the model. The inclusion of other 
variables in our analysis—for instance other dust 
source or use and type of respirators—was consid-
ered but ultimately rejected due to too much miss-
ing information in the data set. Linear mixed-effect 
models using publication as a random effect (Berkey 
et  al., 1995; Lavoué et  al., 2007) and substituted 
nondetects were also investigated but abandoned as 
the construction sector and source control variables 
were too closely associated with the publication vari-
able, which gave rise to effects that were difficult to 
interpret. Similar issues regarding the use of mixed-
effect models (with publication as a random effect) 
were also reported by Hein et  al. (2008; 2010) in 
their analyses of aromatic and chlorinated solvent 
exposures from the literature.

Effects of exposure determinants

The decrease in exposure levels related to an 
increase in sampling duration seen in this study was 
also found in other analyses of existing exposure 
data (Flanagan et al., 2006; Lavoué et al., 2007; Park 
et al., 2009). Longer sampling times in low exposure 
situations can be required to collect sufficient mate-
rial and ensure a detected result, especially for sam-
plers with lower flow rates, which could explain this 
association. This effect can also be due to the inclu-
sion of periods with low or no exposure associated 
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with longer sampling times (Kolstad et  al., 2005; 
Lavoué et  al., 2006). For example, one study used 
a pause/stop mode on their sampling train to sam-
ple exclusively during the actual concrete grind-
ing (Akbar-Khanzadeh and Brillhart, 2002), while 
another reported break times within the sampling 
period (Nash and Williams, 2000). Predictions were 
made based on the median sampling duration by 
task, in order to mitigate any potential for misinter-
pretation of the observed trend.

The 11% per year decrease in exposure levels 
found in our study is similar to the median annual 
decrease of 8% per year reported by Symanski et al. 
(1998) based on approximately 700 data sets pub-
lished between 1967 and 1996. Factors such as tech-
nological development and administrative changes 
have been identified to explain the decreasing expo-
sure levels over time (Kromhout and Vermeulen, 
2000). In our case, the trend could be due in part 
to improvements in dust-suppression efficacy by the 
different engineering control methods during the 
period covered by the data set. Flanagan et al. (2006) 
also observed a decreasing trend in RCS exposure 
levels associated with construction activities within a 
10-year range, from a GM of 0.23 mg m−3 for 1992–
1995 to 0.09 mg m−3 for the 1999–2002 period.

The RIEs for the interaction between workspace 
and ventilation in our study suggest that exposure 
levels are largely lower in an exterior environment 
when significant wind is present. This effect was also 
found in a study conducted on construction sites in 
Québec (Forest and Tremblay (2007) and by Akbar-
Khanzadeh and Brillhart (2002) during concrete fin-
ishing, although not statistically significant for the 
latter. General ventilation indoors had little impact 
on exposure levels in our study although Akbar-
Khanzadeh et  al. (2010) reported a 66% decrease 
with ventilation during surface grinding of concrete 
without any other controls in a field laboratory setup.

The 69 and 71% reductions in RCS exposure levels 
observed for LEV and water-fed tools were somewhat 
lower than the efficacy observed in experimental stud-
ies, which were excluded from our data set. Studies 
investigating the effect of tool-based LEV systems 
on RCS concentrations during tuck pointing, surface 
grinding, and concrete cutting reported decreased 
exposure levels from 70 to 99.7% (Croteau et  al., 
2002; Yasui et  al., 2003; Akbar-Khanzadeh et  al., 
2007; Shepherd et  al., 2009). Similarly, water-fed 
tools reduced exposure levels up to 80–94% during 
surface grinding (Akbar-Khanzadeh et  al., 2010), 
brick cutting (Beamer et  al., 2005), concrete block 
cutting, and tuck pointing (Echt et  al., 2007). The 
comparable, albeit milder results we found using data 

from field conditions indicate that engineering control 
methods are effective in reducing RCS concentrations 
after accounting for other determinants of exposure.

Estimated exposure levels by task

The distribution of the predicted GMs went in 
the anticipated direction, with support tasks such 
as material handling, mixing, and cleanup in the 
lower tier of Fig. 1, while masonry chipping, abra-
sive blasting, tunnel boring, and tuck pointing were 
associated with the largest exposures. The large pre-
dicted GM for scabbling concrete is due to its very 
short duration relative to the other tasks in the data 
set. While there was a 9-fold difference between the 
highest and lowest predicted GMs for the chipping 
tools subcategories, they were all among the tasks 
with the highest exposures. The contrast in expo-
sure levels was smaller for the drilling subcategories 
based on materials (3-fold). Material worked on was 
found to explain the most between-worker variance 
among the exposure models developed by Tjoe Nij 
et  al. (2004) although we did not have sufficient 
information in the database on repeated measure-
ments to perform such analyses.

Our predictions were lower in most cases than the 
GMs reported in Table 1. This could be due in part 
to the exclusion of the effects of the “unreported” 
levels in the prediction scenario. However, the pre-
dictions scenario also excluded the effects of control 
methods (i.e. only the reference category “none” was 
considered). The incorporation of control methods 
would have likely resulted in even lower predicted 
GMs. While we aimed to predict “global” RCS expo-
sure levels encompassing all possible circumstances 
contained in the data set, more specific exposure sce-
narios can be developed for any combination of the 
determinants using the coefficient values in Table A1.

Study limitations

The variable quality of the information on the con-
texts and determinants associated with exposure data 
from the published literature and occupational expo-
sure databases has been identified in several studies 
(e.g. Burstyn et al., 2000; Flanagan et al., 2006; Gold 
et al., 2008; Park et al., 2009) and can present a chal-
lenge to the data analysis and interpretation of the 
findings. The percentage of unreported descriptions 
for the construction sector, project type, workspace, 
use of ventilation, and control methods variables in 
our data set ranged from 15 to 31%. Another issue 
that we encountered in our analysis was the unbal-
anced distribution of the data across the different 
categories—for instance, tasks associated with a 
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single tool and material (e.g. tuck point grinding 
with a tuck point grinder on mortar). We therefore 
had to adopt a parsimonious approach to the selec-
tion of variables included in the models to minimize 
the potential for multicollinerarity, as well as discard 
more complex statistical analyses such as hierarchi-
cal linear models.

Despite the amount of exposure data compiled, 
some circumstances were less documented in this data 
set. For instance, support activities (e.g. cleaning up) 
generally had fewer measurements compared with 
grinding, drilling, chipping, and cutting, which reflects 
an emphasis on studying tasks known to be associated 
with higher exposures. As another illustration, only 35 
measurements were associated with the residential sec-
tor, which is characterized by smaller firms and has 
traditionally been less studied (Methner, 2000).

Conclusion

In summary, we used exposure data compiled from 
the literature to estimate RCS concentrations for 27 
construction tasks and the effects of the use of engi-
neering control methods and worksite characteristics. 
The statistical model included in this analysis based 
on 9 determinants explained an important amount of 
the variability in exposure levels. This model can be 
used to predict RCS concentrations for a range of tasks 
that can be performed during a work shift as part of an 
exposure assessment program to anticipate, evaluate 
and control occupational silica hazards in the fleeting 
and inconsistent environment of construction sites.

Funding

Institut de recherche Robert-Sauvé en santé et en 
sécurité du travail (2010-0044); Institut de recherche 
en santé publique de l'Université de Montréal (to 
J-F.S); Fonds de recherche du Québec – Santé 
(22772); Canadian Cancer Society Research Institute 
(2011-700641) (to J.L.).

References

Akbar-Khanzadeh F, Brillhart RL. (2002) Respirable crystal-
line silica dust exposure during concrete finishing (grind-
ing) using hand-held grinders in the construction industry. 
Ann Occup Hyg; 46: 341–6.

Akbar-Khanzadeh F, Milz S, Ames A et al. (2007) Crystalline 
silica dust and respirable particulate matter during indoor 
concrete grinding–wet grinding and ventilated grinding 
compared with uncontrolled conventional grinding. J Occup 
Environ Hyg; 4: 770–9.

Akbar-Khanzadeh F, Milz SA, Wagner CD et  al. (2010) 
Effectiveness of dust control methods for crystalline silica 

and respirable suspended particulate matter exposure during 
manual concrete surface grinding. J Occup Environ Hyg; 7: 
700–11.

Beamer BR, Shulman S, Maynard A et al. (2005) Evaluation 
of misting controls to reduce respirable silica exposure for 
brick cutting. Ann Occup Hyg; 49: 503–10.

Beaudry C, Lavoué J, Sauvé JF et al. Occupational exposure 
to silica in construction workers: a literature-based exposure 
database. J Occup Environ Hyg, in press.

Berkey CS, Hoaglin DC, Mosteller F et al. (1995) A random-
effects regression model for meta-analysis. Stat Med; 14: 
395–411.

Burnham KP, Anderson DR. (2002) Model selection and multi-
model inference: a practical information-theoretic approach. 
2nd edn. New York, NY: Springer.

Burstyn I, Kromhout H, Boffetta P. (2000) Literature review of 
levels and determinants of exposure to potential carcinogens 
and other agents in the road construction industry. Am Ind 
Hyg Assoc J; 61: 715–26.

Burstyn I, Teschke K. (1999) Studying the determinants of expo-
sure: a review of methods. Am Ind Hyg Assoc J; 60: 57–72.

Chisholm J. (1999) Respirable dust and respirable silica 
concentrations from construction activities. Indoor Built 
Environ; 8: 94–106.

Choodari-Oskooei B, Royston P, Parmar MK. (2012) A simula-
tion study of predictive ability measures in a survival model 
I: Explained variation measures. Stat Med; 31: 2627–43.

Croteau GA, Guffey SE, Flanagan ME et al. (2002) The effect 
of local exhaust ventilation controls on dust exposures dur-
ing concrete cutting and grinding activities. Am Ind Hyg 
Assoc J; 63: 458–67.

Echt A, Sieber K, Lefkowitz D et al. (2007) In-depth survey 
of dust control technology for cutting concrete block and 
tuckpointing brick at the Internantional Masonry Institute 
Bordentown Training Center, Bordentown, NJ. Report 
no. EPHB 282-13. Cincinnati, OH: National Institute for 
Occupational Safety and Health.

Flanagan ME, Seixas N, Becker P et al. (2006) Silica exposure 
on construction sites: results of an exposure monitoring data 
compilation project. J Occup Environ Hyg; 3: 144–52.

Forest J, Tremblay C. (2007) Bilan de l’étude environnemen-
tale de l’exposition au quartz chez certains travailleurs du 
secteur BTP (Report on the environemental exposure to 
quartz for selected workers of the building and public works 
sector). Montréal, QC: Direction de santé publique, Agence 
de la santé et des services sociaux de Montréal [in French].

Gold LS, De Roos AJ, Waters M et al. (2008) Systematic lit-
erature review of uses and levels of occupational exposure to 
tetrachloroethylene. J Occup Environ Hyg; 5: 807–39.

Goldberg M, Levin SM, Doucette JT et al. (1997) A task-based 
approach to assessing lead exposure among iron workers 
engaged in bridge rehabilitation. Am J Ind Med; 31: 310–8.

Greenspan CA, Moure-Eraso R, Wegman DH et  al. (1995) 
Occupational hygiene characterization of a highway con-
struction project: a pilot study. Appl Occup Environ Hyg; 
10: 50–8.

Hein MJ, Waters MA, Ruder AM et al. (2010) Statistical mod-
eling of occupational chlorinated solvent exposures for 
case-control studies using a literature-based database. Ann 
Occup Hyg; 54: 459–72.

Hein MJ, Waters MA, van Wijngaarden E et al. (2008) Issues 
when modeling benzene, toluene, and xylene exposures 
using a literature database. J Occup Environ Hyg; 5: 36–47.

Helsel DR. (2005) Nondetects and data analysis: statis-
tics for censored environmental data. Hoboken, NJ: 
Wiley-Interscience.

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/57/4/432/158181 by guest on 09 April 2024



442	 J-F. Sauvé et al.

Hornung RW, Reed L. (1990) Estimation of average concentra-
tion in the presence of nondetectable values. Appl Occup 
Environ Hyg; 5: 46–51.

IARC. (2012) IARC monographs on the evaluation of carci-
nogenic risks to humans Vol. 100: a review of human car-
cinogens. Part C: arsenic, metals, fibres, and dusts. Lyon, 
France: International Agency for Research on Cancer, World 
Health Organization.

InVS. (2011) Matrice emplois-expositions aux poussières 
alvéolaires de silice cristalline libre (Job-exposure matrix 
for respirable crystalline free silica dusts). Saint-Maurice, 
France: Institut de Veille Sanitaire, Département santé tra-
vail. Available at http://www.invs.sante.fr/surveillance/mat-
gene/silice_cristalline.htm. Accessed 2 May 2012.

Kerr MJ, Brosseau L, Johnson CS. (2002) Noise levels of 
selected construction tasks. AIHA J; 63: 334–9.

Kolstad HA, Sønderskov J, Burstyn I. (2005) Company-level, 
semi-quantitative assessment of occupational styrene expo-
sure when individual data are not available. Ann Occup Hyg; 
49: 155–65.

Kromhout H, Vermeulen R. (2000) Long-term trends in occu-
pational exposure: Are they real? What causes them? What 
shall we do with them? Ann Occup Hyg; 44: 325–7.

Lavoué J, Beaudry C, Goyer N et al. (2005) Investigation of 
determinants of past and current exposures to formaldehyde 
in the reconstituted wood panel industry in Quebec. Ann 
Occup Hyg; 49: 587–602.

Lavoué J, Bégin D, Beaudry C et al. (2007) Monte Carlo simu-
lation to reconstruct formaldehyde exposure levels from 
summary parameters reported in the literature. Ann Occup 
Hyg; 51: 161–72.

Lavoué J, Droz PO. (2009) Multimodel inference and multi-
model averaging in empirical modeling of occupational 
exposure levels. Ann Occup Hyg; 53: 173–80.

Lavoué J, Vincent R, Gérin M. (2006) Statistical modelling of 
formaldehyde occupational exposure levels in French indus-
tries, 1986-2003. Ann Occup Hyg; 50: 305–21.

Lee L. (2012) NADA: Nondetects And Data Analysis for envi-
ronmental data. Available at http://CRAN.R-project.org/
package=NADA. Accessed 7 May 2012.

Leung CC, Yu IT, Chen W. (2012) Silicosis. Lancet; 379: 
2008–18.

Linch KD, Cocalis JC. (1994) An emerging issue: silico-
sis prevention in construction. Appl Occup Env Hyg; 9: 
539–42.

Lubin JH, Colt JS, Camann D et  al. (2004) Epidemiologic 
evaluation of measurement data in the presence of detection 
limits. Environ Health Perspect; 112: 1691–6.

Lukacs PM, Thompson WL, Kendall WL et  al. (2007) 
Concerns regarding a call for pluralism of information the-
ory and hypothesis testing. J Appl Ecol; 44: 456–60.

Lumens ME, Spee T. (2001) Determinants of exposure to res-
pirable quartz dust in the construction industry. Ann Occup 
Hyg; 45: 585–95.

Maciejewska A. (2008) Occupational exposure assessment for 
crystalline silica dust: approach in Poland and worldwide. 
Int J Occup Med Environ Health; 21: 1–23.

Madl AK, Donovan EP, Gaffney SH et  al. (2008) State-of-
the-science review of the occupational health hazards of 

crystalline silica in abrasive blasting operations and related 
requirements for respiratory protection. J Toxicol Environ 
Health B Crit Rev; 11: 548–608.

Methner MM. (2000) Identification of potential hazards 
associated with new residential construction. Appl Occup 
Environ Hyg; 15: 189–92.

Moore M. (1999) Crystalline silica: occurrence and use. 
Indoor Built Environ; 8: 82–8.

Nash NT, Williams DR. (2000) Occupational exposure to crys-
talline silica during tuckpointing and the use of engineering 
controls. Appl Occup Environ Hyg; 15: 8–10.

NIOSH. (2002) Health effects of occupational exposure to respir-
able crystalline silica. DHHS [NIOSH] Report no. 2002–129. 
Cincinnati, OH: Department of Health and Human Services, 
National Institute for Occupational Safety and Health.

Park D, Stewart PA, Coble JB. (2009) Determinants of exposure 
to metalworking fluid aerosols: a literature review and analy-
sis of reported measurements. Ann Occup Hyg; 53: 271–88.

Peters S, Vermeulen R, Olsson A et al. (2012) Development 
of an exposure measurement database on five lung carcino-
gens (ExpoSYN) for quantitative retrospective occupational 
exposure assessment. Ann Occup Hyg; 56: 70–9.

Raftery AE, Madigan D, Hoeting JA. (1997) Bayesian model 
averaging for linear regression models. J Am Stat Assoc; 92: 
179–91.

Rappaport SM, Goldberg M, Susi P et  al. (2003) Excessive 
exposure to silica in the US construction industry. Ann 
Occup Hyg; 47: 111–22.

Sauvé JF, Beaudry C, Bégin D et al. (2012) Statistical mod-
eling of crystalline silica exposure by trade in the construc-
tion industry using a database compiled from the literature. 
J Environ Monit; 14: 2512–20.

Shepherd S, Woskie SR, Holcroft C et al. (2009) Reducing sil-
ica and dust exposures in construction during use of powered 
concrete-cutting hand tools: efficacy of local exhaust ventila-
tion on hammer drills. J Occup Environ Hyg; 6: 42–51.

Susi P, Goldberg M, Barnes P et al. (2000) The use of a task-
based exposure assessment model (T-BEAM) for assess-
ment of metal fume exposures during welding and thermal 
cutting. Appl Occup Environ Hyg; 15: 26–38.

Symanski E, Kupper LL, Rappaport SM. (1998) 
Comprehensive evaluation of long-term trends in occupa-
tional exposure: Part 1. Description of the database. Occup 
Environ Med; 55: 300–9.

Therneau T, Lumley T. (2012) Survival: survival analysis, 
including penalised likelihood. Available at http://CRAN.R-
project.org/package=survival. Accessed 7 May 2012.

Tjoe Nij E, Höhr D, Borm P et al. (2004) Variability in quartz 
exposure in the construction industry: implications for 
assessing exposure-response relations. J Occup Environ 
Hyg; 1: 191–8.

Valiante DJ, Schill DP, Rosenman KD et  al. (2004) Highway 
repair: a new silicosis threat. Am J Public Health; 94: 876–80.

Verma DK, Kurtz LA, Sahai D et al. (2003) Current chemi-
cal exposures among Ontario construction workers. Appl 
Occup Environ Hyg; 18: 1031–47.

Yasui S, Susi P, McClean M et al. (2003) Assessment of silica 
exposure and engineering controls during tuckpointing. 
Appl Occup Environ Hyg; 18: 977–84.

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/57/4/432/158181 by guest on 09 April 2024

http://www.invs.sante.fr/surveillance/matgene/silice_cristalline.htm
http://www.invs.sante.fr/surveillance/matgene/silice_cristalline.htm
http://CRAN.R-project.org/package=NADA
http://CRAN.R-project.org/package=NADA
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival


	 Silica exposure during construction activities	 443

Appendix: Multimodel Averaged 
Coefficients

Table A1.  Coefficients from the multimodel inference 
procedure, averaged over 20 iterations.

Variable ln RCS (mg m−3) RSDb 
(%)βa SEa

Intercept −1.23 0.569 14

ln[sample duration (min)] −0.513 0.092 5

Sample year (1988) −0.112 0.025 11

Task

Chipping—Multiple tools 
(including jackhammer)

2.37 0.357 7

Abrasive blasting 1.42 0.380 22

Chipping—jackhammer 0.668 0.312 13

Scabbling concrete 0.667 0.587 23

Tunnel boring 1.25 0.264 12

Tuck pointing 1.35 0.294 8

Chipping—other tools −0.168 0.365 66

Masonry cutting −0.315 0.285 34

Pick and shovel work −1.34 0.498 12

Surface grinding/finishing Reference —

Moving soil/rock with heavy 
equipment

−1.09 0.453 17

Drilling—concrete −0.270 0.328 99

Sanding −1.32 0.394 15

Demolition −0.809 0.295 37

Drilling—rock −0.921 0.207 18

Masonry tasks n.e.c. −2.32 0.432 8

Asphalt/concrete road milling 0.656 0.421 19

Drilling—soil and rock −1.69 0.411 23

Concrete spraying −0.859 0.328 20

Roadwork tasks n.e.c. −2.09 0.266 10

Installing concrete forms −0.996 0.173 13

Electrical maintenance −1.84 0.273 9

Concrete/mortar mixing −2.44 0.328 9

Cleaning up −2.38 0.446 15

Cutting/installing ceiling tiles −1.64 0.295 19

Excavation tasks n.e.c. −2.01 0.249 13

Foundation tasks n.e.c. −2.17 0.267 11

Construction sector

Residential 0.238 0.409 36

Industrial and commercial −0.574 0.268 12

Civil engineering and roadwork Reference —

Other/unreported 1.74 0.299 9

Project type

Renovation −0.093 0.260 107

New construction Reference —

Other/unreported −0.813 0.340 23

Workspace

Enclosed/indoors 2.87 0.197 5

Open/exterior Reference —

Unreported 1.19 1.41 12

Variable ln RCS (mg m−3) RSDb 
(%)βa SEa

Ventilation

No 3.63 0.251 3

Yes Reference —

Unreported 2.32 0.408 6

Controls (source)

LEV −1.17 0.182 5

None Reference —

Water-fed tool −1.24 0.318 6

Manual spraying −0.847 0.310 25

Other/unreported 0.140 0.381 63

Workspace: ventilation interaction

Interior: without ventilation −3.61 0.303 4

Interior: unreported −4.10 0.349 4

Unreported: without ventilation −2.72 1.45 8

Both unreported −0.971 1.41 15

SE, standard error. RCS, Respirable crystalline silica. n.e.c., 
not elsewhere classified . LEV, local exhaust ventilation
aAverage estimated parameter values of the 20 iterations.
bRelative standard deviation (RSD) of the model coefficients 
over the 20 iterations. 

Table A1.  Continued
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