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A great many papers and one textbook have been published on the topic of how to incorporate
‘nondetects’, low-level values reported only as below a detection limit, into statistical analyses.
This is of interest not only in occupational hygiene but also in environmental sciences and as-
tronomy, among other fields. Here, the literature is reviewed from the earliest known publica-
tion on the topic >40 years ago and recommendations contrasted. I have tried to pull some
unifying conclusions out of the mix, ending with four suggestions I believe all can agree on.
See if you agree with me.
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Much Ado About Next to Nothing:
Incorporating Nondetects in Science

This title is not original. I first saw ‘Much Ado
About Next to Nothing’ as the title of a conference
presentation given by a US Environmental Protection
Agency (USEPA) scientist around 1980 on handling
data below detection limits. I cannot find an official
reference to the talk or be more specific. The remote-
ness of the reference should remind us of how long
the discussion has continued on which methods can
incorporate low-level left-censored data into scientific
studies. A more easily referenced document is the
US Geological Survey report by Al Miesch (Miesch,
1967). He stated that substituting a constant for values
(now called ‘nondetects’) below the detection limit
created unnecessary errors, instead recommending
Cohen’s Maximum Likelihood procedure. Cohen’s
procedure was published in the statistical literature
in the late 1950s and early 1960s (Cohen, 1957,
1961), so its movement into an applied field
by 1967 is a credit indeed to Miesch. Miesch read
the literature of other disciplines. His recommenda-
tion has consistently been ignored and substitution

of one-half (or one over the square root of two) times
the detection limit remains the most common method
to date in the environmental sciences for performing
all manner of statistical procedures on low-level data.
That is both unfortunate and potentially dangerous.

In addition to the environmental sciences where I
work, the issue of correctly handling nondetect data
has been of great interest in astronomy (Feigelson
and Nelson, 1985) and in occupational health
(Succop et al., 2004; Hewett and Ganser, 2007). This
journal has published several articles dealing with
it (Hewett and Ganser, 2007; Finkelstein, 2008;
Krishnamoorthy et al. 2009; Flynn, 2010, among
others). We all deal with information overload,
barely having time to read the relevant literature of
our own discipline. It is next to impossible to keep
up with work in other disciplines, even when they en-
counter the same issues as we do. Handling nondetect
data is one example. So let me summarize several
decades of work in environmental studies and then
relate it to a few recent papers in your discipline.

In the 1980s, I published three papers along with
co-workers on how to treat nondetects for the field
of environmental water chemistry (Gilliom and
Helsel, 1986; Helsel and Gilliom, 1986; Helsel
and Cohn, 1988). These were simulation studies,
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generating data from multiple distributions because
water quality data rarely follow any distribution
very closely. We then censored the data to varying
degrees. We estimated the mean and other descrip-
tive statistics using several estimation methods, in-
cluding substituting zero, one-half the detection
limit, or the limit itself, as well as maximum likeli-
hood estimation (MLE) and a method employing re-
gression on a probability plot. The point was to see
how well these methods could reproduce the correct
value for the statistics, particularly when an under-
lying distribution is unknown. We found that the
probability plot method performed best if only one
method was to be applied to all statistics estimated,
distributions, and censoring levels. If we separated
the estimation of percentiles from moment statistics
(mean, standard deviation), maximum likelihood
performed best for the estimation of percentiles, as
long as the data distribution was not too far away
from that assumed by the MLE. However, if the dis-
tribution was badly misspecified, MLE could pro-
duce an estimate that was very far off the mark.
The probability plot method still performed best
for estimating moment statistics, as the mean and
variance are quite sensitive to errors at the upper
end of the distribution. The probability plot method
uses the recorded data at the upper end rather than
a distributional model. Substitution methods per-
formed poorly across the board, except for the in-
stance of estimating a mean with one detection
limit, where substituting one-half the detection limit
was not too bad. Sanford et al. (1993) later deter-
mined that substituting one over the square root of
two was better than using one-half the detection

limit to estimate the mean of lognormal data with
one detection limit.

In 1990, I stated that techniques of survival analy-
sis, statistical methods for handling right-censored
‘greater-thans’ in medical and industrial applica-
tions, could be turned around and applied to
censoring on the low end (Helsel, 1990). The
Kaplan–Meier (KM) method, standard in medical
sciences since the late 1950s, joined the stable of
possible methods for dealing with nondetects. How-
ever, there is an incredibly strong pull for doing
something that is simple and cheap, not to mention
familiar. My 1990 survey clearly states that substitu-
tion is generally a bad idea. The article has since
been referenced a myriad of times to justify using
substitution! The fact that I mention it there seemed
to give others license to support the inferior practice.
As I said, there is an incredibly strong pull for doing
something simple and cheap.

The problem with substitution is what I have come
to call ‘invasive data’. Substituted values possess
a pattern that is alien to the pattern of the original
data. The effect of the artificial substituted pattern
often dominates that of the original values. Consider
the data of Fig. 1, a straight-line relationship
between two variables, Concentration (y) versus
Distance (x). The slope of the relationship is signif-
icant, with a strong correlation between the varia-
bles. What happens when the data are reported
using two detection limits of 1 and 3, and one-half
the limit is substituted for the nondetects? The result
(Fig. 2) includes horizontal lines of substituted val-
ues, changing the slope, and dramatically decreasing
the correlation coefficient between the variables.

Fig. 1. Original data prior to censoring. True correlation equals 0.81.
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There are many published articles where substitution
has been employed for an environmental contami-
nant and the correlation computed. A low correlation
coefficient is cited as evidence that a proposed caus-
ative agent (plotted on the horizontal axis) is not the
likely cause of contamination. All such conclu-
sions should be considered suspect, due to the use
of substitution. There are better ways.

A number of simulation studies over the years
have evaluated methods for estimating descriptive
statistics of censored data. Their findings do not al-
ways seem to agree. Shumway et al. (2002) used
MLE and probability plot methods on data from log-
normal and gamma distributions; both are skewed
distributions commonly used to model water quality
data. Their acronym for the probability plot meth-
ods, Regression on Order Statistics (ROS), has stuck
in the environmental sciences. The same method has
been called LPR—log-probit regression (Hewett and
Ganser, 2007), when a lognormal distribution is as-
sumed. Shumway et al. (2002) found that for esti-
mating the mean, both performed similarly, with
the tradeoff that bias is a problem for MLE while
confidence intervals around the mean are wider for
ROS with highly-skewed data. They did not consider
the KM estimator and used the best fit of three
candidate distributions (normal, square root, or log-
normal) in ROS estimation. Singh et al. (2006) con-
ducted perhaps the most comprehensive evaluation
to date of methods to compute the 95% upper confi-
dence limit on the mean (UCL95) of data with mul-

tiple detection limits. They found that the KM
estimate of mean and standard deviation, followed
by either a Chebyshev, t-interval, or bootstrap esti-
mate of the UCL95 provided better coverage than
MLE or ROS methods, and far better than substitu-
tion methods. Quality of the UCL bound determined
by the two nonparametric (Chebyshev and bootstrap)
and one parametric method (t-interval, requiring that
the Central Limit Theorem be invoked) depended on
sample size and other considerations. They state that
‘contrary to the general rule of thumb, it should be
noted that the DL/2 does not perform well even for
low censoring levels . . . such as 10%, 20%, and
30%.’ Antweiler and Taylor (2008) evaluated KM,
ROS, MLE, and substitution methods for estimating
the mean and other statistics. Instead of generating
‘true’ concentrations from one or more statistical
distributions, they used a precise research-grade lab-
oratory technique resulting in no nondetects to deter-
mine the true value and used a less-precise typically
used technique on the same samples to provide the
censored data. After applying KM, MLE, and the
other methods to the censored data to estimate de-
scriptive statistics, the results were compared to the
statistic of the true technique. They found that KM
was the overall best method and MLE to be ‘far in-
ferior to all other treatments except substituting zero
or the detection limit value’. They also found that
using the machine readings from the less-precise
technique did not work well, arguing against the
common user request to ‘just give me the numbers’

Fig. 2. Data from Fig. 1 after censoring at detection limits of 1 and 3 p.p.b. and substituting. Substituted values of half dl are shown
as open circles. These invasive data form flat lines at one-half the detection limits, lowering the correlation to 0.55.
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rather than censoring low-level values. Laboratory
data are censored when machine readings fall into
the range where any (small) signal is obscured by
the noise. Some readings may be negative. Chemists
consider these individual numbers to have low reli-
ability, and hence the censoring. MLE and KM
methods represent nondetects by the proportion of
values falling below each detection limit, without at-
tributing any individual value to them. Attributing
noisy individual values to nondetects apparently
results in less accuracy than using the proportional
information.

Here in the Annals, Hewett and Ganser (2007)
evaluated methods for estimating the mean and the
95th percentile of left-censored data, both with one
and multiple detection limits. After evaluating
MLE, ROS, KM, and substitution methods, they
found that MLE consistently outperformed the
others when root mean-square error was the index
of performance. Similar to Shumway et al. (2002),
they found that a robust method performed better
when bias was used as the index of performance.
They also found that KM did not work well for data
with one detection limit (dl). This is a known charac-
teristic of KM—as a distribution-free procedure, it
will not estimate down below the lowest dl. It only
sees what the data tells it—free of models for extrap-
olation beyond the data range. All values recorded as
below the dl will be assigned either the dl itself (the
Efron bias correction) or the lowest detected value
(the standard practice). A positive bias results. He-
wett and Ganser found that KM performed much
better for data with multiple dls. As scientists be-
come more familiar with these methods, we can
choose their uses appropriately. Their remaining
findings were fairly similar to those of Gilliom and
Helsel (1986) and Helsel and Cohn (1988). MLE
was the best procedure when data were close to the
assumed distribution, in this case the lognormal,
and lognormal distributions with some mild (at least
for environmental studies) contamination. MLE
methods should work best in these situations. ROS
methods would be expected to be the second best
in situations where data follow a known distribution.
In this issue of the Annals, Flynn (2010) solves for
descriptive statistics by maximizing the Shapiro–
Wilk statistic. This approach is something like the
Shumway et al. (2002) procedure in that the
Shapiro–Wilk statistic is essentially the r-squared
of data plotted on a probability plot. Determination
of the best Box–Cox transformation follows from
the best fit of the statistic. Following selection of
the appropriate distribution (Flynn considered only
normal and lognormal, but other transformed-

normal distributions should be possible), statistics
are computed by varying estimated values for nonde-
tects, constrained to be between zero and their detec-
tion limit, until the maximum Shapiro–Wilk statistic
is obtained. He notes that this is much like the
‘robust’ estimation process of ROS, avoiding trans-
formation bias. Enabling this within Excel encour-
ages use of the method by people who would
otherwise substitute numbers, those who avoid using
a commercial statistics package in favor of the more
familiar Excel spreadsheet.

I have always been a lumper rather than a splitter,
attempting to find broad statements that generally
hold across many studies. Evaluations of the quality
of methods for estimating descriptive statistics ap-
pear to differ based on at least three characteristics
of the simulation studies: sample size, the number
of detection limits, and the magnitude of departure
from the assumed distribution. Larger departures
from the assumed distribution will favor nonpara-
metric methods such as KM and robust methods like
the robust ROS. In environmental studies, this is key,
as field data rarely follow any known distribution. In
more controlled studies, data more likely follow
a known distribution where MLE methods and the
distributional ROS work very well. In simulations
where data are generated using a known distribution
or with small departures, as with Hewett and Ganser
(2007), MLE methods win out. In other studies using
more diverse data, either using multiple distributions
(Singh et al., 2006) or censoring observed field data
(Antweiler and Taylor, 2008; Helsel and Gilliom,
1986), KM or ROS perform better. In environmental
studies, we rarely encounter data today with only
one dl. KM often works well with multiple dls. It
is biased when there is only one dl, and it is best
not to use it in that situation. Finally, all methods
have lower errors with more data, obviously, but
the amount of data interacts with the other two fac-
tors. If data follow a known distribution, MLE may
work well for small data sets because it is using cor-
rect distributional information that KM and robust
ROS do not. If data depart from the assumed distri-
bution, however, the penalty for using a misspecified
MLE can be large when there is little data to go on.
In short, trying to reconcile studies that state ‘the
standard MLE method consistently outperformed
the [other methods]’ (Hewett and Ganser, 2007) with
those finding ‘the best technique overall for determi-
nation of summary statistics was the nonparametric
Kaplan–Meier technique . . . . Maximum likelihood
techniques were found to be far inferior to all other
treatments except substituting zero or the detection
limit value’ (Antweiler and Taylor, 2008) is only
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possible when considering the differing data types
and conditions under which the methods were tested.

Finally, estimation of descriptive statistics is just
one of the tasks where nondetects must be incorpo-
rated. There is also a need for methods to incorporate
these data into hypothesis tests, correlation and re-
gression, and multivariate procedures. Finkelstein
(2008) presents a strong case for performing hy-
pothesis tests with methods drawn from survival
analysis to compare control versus test groups, rather
than only the heuristic comparison of group me-
dians for censored data. He used MLE procedures—
nonparametric methods for censored data are also
available. The message of his paper is entirely consis-
tent with ‘Nondetects And Data Analysis’ (Helsel,
2005), ignoring methods that incorporate-censored
data lead to wrong decisions both economically and
for human or ecosystem health. In my 2005 book, I
used the flawed decision to launch the Challenger
shuttle as the example. Finkelstein’s example of miss-
ing the effects of asbestos in the lungs of brake
mechanics is equally compelling.

Software is often a hurdle to use these techniques.
MLE procedures in commercial statistics software
are sometimes coded with the ability to use left-
censored values. Nonparametric methods are not. Im-
plementations within simpler software are becoming
available—the KM method has been embedded
into an Excel worksheet, available at http://www
.practicalstats.com/nada. Excel worksheets to com-
pute ROS methods are on the Internet. Flynn (2010)
provides an optimization approach for computing
descriptive stats using Excel’s Solver routine. Better
methods than substitution will hopefully be used
more frequently as the software to perform them
becomes more easily available.

While differences in objectives and data character-
istics might lead to using different methods, there are
at least four things that I think we should be able to
agree on:

1. In general, do not use substitution. Journals
should consider it a flawed method compared
to the others that are available and reject papers
that use it. The lone exception might be when es-
timating the mean for data with one censoring
threshold, but not for any other situations or pro-
cedures. Substitution is NOT imputation, which
implies using a model such as the relationship
with a correlated variable to impute (estimate)
values. Substitution is fabrication.

2. Method evaluations for estimating a mean do not
necessarily carry over to the more difficult issues
of how to compute interval estimates, upper per-

centiles, a correlation coefficient, a regression
slope and intercept, or a multidimensional sur-
face when left censoring is present. There are
many interesting issues still to be evaluated.

3. We should all become more familiar with the
literature on censored data from the survival/
reliability analysis discipline. There is no need
to reinvent the wheel for tires on the left side if
the wheel already exists on the right. There
should be more widespread training in survival/
reliability methods within university programs
in both our disciplines.

4. Commercial software should more easily incor-
porate left-censored data into its survival/
reliability routines. For example, plots and hy-
pothesis tests of whether censored data fit a
normal and other distributions, as requested by
Hewett and Ganser (2007), exist in these pack-
ages. They are usually coded to handle only
right-censored data. Users in both environmental
sciences and occupational hygiene should loudly
request that this be changed.
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