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Abstract—In this introductory article the author argues for an increased use of a multivariate
analytical approach to the complex problems encountered in occupational hygiene. Relations
between exposure at the work place and reported health effects arc mostly so complicated and
depend on so many factors that methods other than the traditional statistical techniques should be
applied. Chemometrics is a field within chemistry where mathematics, statistics and modem
computer technology are used to perform multidimensional data analysis. Graphical plots are
extensively used to extract the most relevant information from the measurements. The possibility of
performing soft modelling through pattern recognition and multifactorial regression analysis will
simplify the management of large data sets. A 'metric' philosophy is introduced to describe
similarity and dissimilarity among many objects characterized with many variables. This article
emphasizes the use of principal component analysis and partial least-squares regression for such
purposes. Application of the SIMCA method for classification of objects is also described. These
methods arc not dependent upon a priori formulated hypotheses, as in the classical modelling
techniques. Instead of being restricted to accepting or rejecting previously formulated hypotheses,
these methods may lead to new insights and unperceived features of a complex problem. The
application of such exploratory methods may produce new hypotheses and further investigations
are necessary to confirm or discard any 'new' chemometric findings. Copyright © 1996 British
Occupational Hygiene Society. Published by Elsevier Science Ltd.

INTRODUCTION

The occupational hygienist is faced with complex problems. As efforts are intensified
towards a description and analysis of the total work environment there is a need for a
multivariate approach. This is particularly so in studies where occupational health
problems are related to the complex hygienic quality at the work place. There are
several analytical methods that can handle large, complex data. Some of these methods
apply graphical presentations and plots extensively to simplify interpretation.

In an earlier paper (Schneider et ai, 1993) a favourite plot of chemometrics
appeared in this journal for the first time. In that article Schneider et al. (1993) used a
variable loading plot to interpret correlations between the respirable fibre
concentrations and various properties of vitreous fibre types, including the content
of oil from the production. Such a variable loading plot may be used to find the most
relevant or important variables in an investigation. The recognition of variables with
low or no importance at all is quite helpful in cases with many variables. In addition
the correlations among the variables can be depicted. A variable loading plot is
schematically shown in Fig. 1. The variable loadings (XI . . . X6) are given with co-
ordinates in the range + 1 and related to two axes, t} and t^- These are calculated so
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Fig. 1. Variable loading plot for a data set with six variables (XI . . . X6). The loadings are referred to axes
(principal components) which account for most of the variance. (See text for further details on the

calculations.)

that they account for most of the variance of the data set. (These axes are the
so-called principal components. A more detailed description of this will be given
below.) Variables far out along the axes, that is variables with large loadings, are
important (XI, X2, X5, X6). Less important variables are located near the origin
(X3, X4). The axes are calculated to be orthogonal and variables lying close together
(XI and X2) are highly correlated whereas the variables XI and X6 are uncorrelated.
Variable X5 is negatively correlated with XI and X2 [Quite recently another
chemometric article was presented in this journal, showing a multivariate calibration
technique for aerosol analysis (Bye, 1994). This application is discussed in Example 3
in this paper.]

Chemometrics is a field within chemistry where mathematics and statistics are
used to extract the most important information from large amounts of chemical data
(Sharaf et al., 1986; Massart et al., 1988). The branch of chemometrics includes: (a)
signal processing (Massart et al., 1988); (b) experimental design (Deming and
Morgan, 1987); and (c) multivariate data analysis, for example classification and
prediction (Wold et al., 1983). I will focus on the latter applications in this
introductory article and describe why and how principal component and multivariate
regression methods could be used in occupational hygiene.

Nature is a complex system of many interrelated factors. Thus, in order to
understand this it is only reasonable that we have to study and consider more than
one variable at the time. Analogously the interplay between work and human health
is multidimensional and should be examined with multivariate methods. In its
broadest sense, the fundamentals of chemometrics are indeed based on multi-
dimensional philosophy and strategy. Chemometrics is most commonly associated
with principal component analysis {PCA) for pattern recognition purposes (Kowalski
and Wold, 1982; Wold et al., 1987) and partial least squares (PLS) for multivariate
regression or multivariate calibration purposes (Martens and Naes, 1989). These
methods represent a soft modelling approach to the complex questions encountered

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/40/2/145/219716 by guest on 20 April 2024



Chemometrics in occupational hygiene 147

in occupational hygiene and health. They may contribute with a quantitative
description, a systematic organization and a deeper understanding of relevant
information in a data set. Extensive use of graphical plots for interpretation and
presentation makes chemometric methods a powerful analytical instrument in
research fields with large amounts of data, especially if complex and disorganized.

PRINCIPAL COMPONENT ANALYSIS (PCA)

The main concept of chemometrics is that similarity or dissimilarity between
objects (samples) can be measured by the 'distance' between the objects in a
multidimensional measurement space. An object characterized by p variables is
looked upon as a /(-dimensional vector in the space represented by the p variable
axes. Numeric values of the variables, that is the parameters, determine the position
of the objects in this space (Wold et al., 1987). This 'metric' representation is easily
visualized in two dimensions as shown in Fig. 2.

Example 1: hygienic quality of a workplace

The hygienic quality at the same work operation is compared in two different
foundries A and B. This example has been constructed to illustrate the applicability
of the basic chemometric methods for occupational hygiene studies. Respirable dust
(RD), the quartz content (Q), the Fe concentration (Fe), the CO level and the
temperature (T) have been measured. Personal sampling for 10 workers are reported
in Table 1.

Each worker (sample) is taken as an object characterized by the five variables in
Table 1. Using respirable dust and quartz as the co-ordinate axes, the data in Table 1
may be plotted as in Fig. 2. All the workers are represented as points in this two-
dimensional data space. Inclusion of the CO exposure is illustrated by the three-
dimensional diagram in Fig. 3. Such two- and three-dimensional pictures may be
very useful in looking for a pattern in the data structure, that is any systematic

0 0 0 4 0.8 12 1.6 2.0

Respirable dust ( m g / m )

Fig. 2. Two-dimensional representation of the 10 foundry workers at two different plants (see Table I)
exposed to respirable dust (RD) and quartz (Q). Each worker (object) is characterized by the two variables

RD and Q.
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Table 1. Time-weighted average exposure parameters for 10 workers at the same work operation in two
different foundries, A and B. Workers 1, 2, 3, 7 and 10 belong to plant A

Operator

1

a
3
4
5
6
7
8
9

10

Respirable dust
(mg m~3)

0 83
0.61
0.61
0.59
1.30
2.10
1.70
1.00
0.90
1.20

Quartz
(mgm~3)

0.12
0.15
0.18
0.08
0.07
0.06
0.13
0.06
0.12
0.16

Fe
(mg m~3)

0.20
0 10
0 15
0.05
0.20
0.40
0.25
0.27
0.15
0.30

CO
(ppm)

7
15
28
42

7
19
2

23
30
25

Temperature
(°Q

26
29
34
29
25
22
20
27
30
24

CO

Fig. 3. Three-dimensional representation of the 10 foundry workers from two different plants (see Table 1)
exposed to respirable dust (RD), quartz (Q) and CO. Each worker (object) is characterized by the three

variables: RD, Q and CO.

variation among the data points. However, at this stage you have to decide on the
viewpoint and the view direction to have the optimized orientation.

The principles of a 'metric' representation of samples may also be extended and
applied for higher dimensions. However, with more than say, four variables
characterizing the samples, there are difficulties with perceiving the relations and
covariance between the objects and variables. A fourth dimension can be introduced
in the three-dimensional plot in Fig. 3. This can be done with a marker to show the
level of this variable for each point. In Fig. 4 the Fe parameter is plotted in
increasing order, according to the concentrations. The interpretation is, however, not
straightforward!

With more than four variables describing the samples, it is a complex task to
extract the data structure and most important information of the investigated
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CO

Fig. 4. A three-dimensional scatter plot of the 10 foundry workers with an indicator representing the level
of Fe exposure in increasing order as the fourth dimension

system. Questions such as: What are the relations between the objects? Are there
more than one class of objects? Which variables are most important? Which
variables are most appropriate for discrimination between the classes? Are there
variables of no importance? Which variables are correlated?—are frequently
encountered when we examine correlations between health effects and exposure at
work.

PCA is one possible way to study such questions. A large number of objects
(samples) described with many variables (properties) can be handled simultaneously
with this analytical method. The observations are organized as an X matrix (table),
with m rows, one for each object and p columns, one for each variable, as illustrated
in Fig. 5.

The main purpose of the principal component analysis is to calculate a smaller
number of new variables (A). They should describe the phenomenon being studied
quite well. These A <p variables are the principal components (PCs) and are linear
combinations of the original variables. They are calculated by a least-squares
method (Wold, 1982) as orthogonal components, successively describing decreasing
amounts of the variance of the data set. A principal component may be presented
geometrically as shown in Fig. 6. Objects are seen as a point swarm (here two
dimensional) and the first principal component is calculated as the best possible
linear fit to the data points. This may be compared to the straight line in linear
regression, except that we in the PC case have errors in both the original x and y
variables. The projection of the ith object onto the principal component defines the
position of this object tu along the component, that is the object score. The variance
accounted for by the first principal component is subtracted from the total variance
of the data matrix. Principal component 2 (PC2) is the direction in space that is
orthogonal to PCI and is associated with the maximum residual variance of the data
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Fig. 5. A data table X organized on the basis of m objects (the rows) characterized by p variables (the
columns).

vorioble 2

Principol component 2

Prlncipol component 1
O

mlddl* point

vorioble 1

Fig. 6. Principal component analysis. The principal component is a linear combination of the two variables
1 and 2 such that it describes the maximum of the systematic variation in the data set. The first two
orthogonal principal components (PCI and PC2) are shown All calculations are based on the middle
point of the data set Object scores t\t and t^ are the projections of point i (object i) onto the respective

components.

set. For practical reasons during the calculations (and plotting), the mean value of all
the objects is used as origin. This is the average of each column in the table in Fig. 5.
Therefore the two orthogonal principal components (PCI and PC2) represent nearly
'a rotation' of the original co-ordinate axis.

Object scores, given as t\b t-u in Fig. 6, give the position of the ith object in the
'new' co-ordinate system defined by the principal components. Variable loadings
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define the directions of the principal components relative to the original axis.
Mathematically they are the direction cosines for the principal components relative
to the original variables. They represent the contribution from each variable to the
principal component. In two and three dimensions the PCs may be looked upon as a
'rotation' of the original axis. For higher dimensions we will have a 'new data space'
with orthogonal axis, describing most of the variance of the data set. Very often a
few components describe most of the systematic variability in the data. These are
new variables and they thus reduce the dimension of the problem.

Through the calculation of principal components we have a 'new' one-, two-,
three- or ^-dimensional model space, depending upon the number of significant
components (A). The projections of the objects onto the principal components
represent the positions in the 'new' co-ordinate space. A plane defined by the first
two principal components will thus function like a two-dimensional window into the
/^-dimensional data space. These two components hold most of the variance of the
data set. We can see the positions of the objects at their score values. Similar objects
tend to cluster together whereas different objects lie further apart. This is shown in
Fig. 7 with the workers from the two similar workplaces in foundries A and B.
Information is taken from Table 1, each worker being characterized by five exposure
parameters. The first two principal components account for 82% of the variance.
The groups of workers are seen, although the variation within group II is quite large.
Groups I and II are actually plants A and B. However, no direct information about
the work place origin has been introduced in the data analysis. This separation is less
obvious in Figs 2 and 3. In this way, the object score plot for the first two principal
components has provided us with a two-dimensional window into the five-
dimensional data space. Maximum separation and perhaps also the maximum
discrimination among the objects has been obtained by PCA.

Object score plot
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Principal component 1

Fig. 7. Object score plot for the first two principal components, describing 61.5 and 20.5% of the variance,
respectively. Group I and II are identical to plant A and B. No information of the sample origin has been

introduced during the data analysis.
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Projecting the loadings onto the same principal components gives the variable
loading plot, shown in Fig. 8. These loadings describe the contribution of the original
variables to the respective principal component. Variables far out along the axis are
important for the variance along that component, whereas variables near the origin
are less important. Variables lying close together in such a plot are correlated,
whereas variables separately situated in the plot are uncorrelated. Such variables
contribute independently to the two different (orthogonal) components.

All five variables in Fig. 8 are important. The respirable dust (RD) and the Fe
measurements are highly correlated since they lie close together. The temperature
(T) and the respirable dust concentration are inversely correlated since they lie
close to a line through and on opposite sides of the origin. Quartz concentration
(Q) and the respirable dust are not correlated since the two variables Q and RD
mainly contribute separately to the two orthogonal principal components. A
simultaneous inspection of the object scores (Fig. 7) and the variable loadings
(Fig. 8) will give information about the distribution of the objects and the
corresponding influence of the variables. This can be combined in a biplot, see
Fig. 9, where you can see the data structure or pattern of the objects and the
variable influence. Variables far out along one axis are important for the
distribution of objects along the respective axis.

The variables RD, Fe and T are most important for principal component 1.
Workers with high exposure to respirable dust (RD) and Fe are located to the right
in Fig. 9. Furthermore, the variables Q and CO are important for principal
component 2, and workers with the highest exposure to quartz are found in the lower
part of Fig. 9. All the variables are important for the two principal components
because none of them are located close to the origin, that is they all have high
loadings. By contrast, this is the case in the schematic illustration in Fig. 1, with a
low importance of variables X3 and X4.
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Variable loading plot

o CO
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- 0 6 - 0 4 - 0 ' 2 0 2 CM 0 6

Principal component 1

Fig. 8. Variable loading plot for the first two principal components. See Table 1 for explanation of the
variable names. Respirable dust (RD) and Fe concentration are correlated and they axe important for

component 1. Quartz (Q) and the CO level is important for component 2
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Fig. 9. A biplot of the object scores (see Fig. 7) and the variable loadings (sec Fig. 8) for the first two
principal components. This plot simplifies the interpretation of the variable influence to the object pattern.

Through the calculation of the two principal components, as much as 82% of the
systematic variability in the exposure data is modelled. The two PCs are linear
combinations of the original five variables. They are two new variables and the
dimension of the problem (work place quality) has thus been reduced. The object
score plot in Fig. 7 shows that there is a systematic difference between plant A and B
along the second component. This is seen by the position of the CO and quartz
variables. And remember, no information about the work place origin of the workers
was introduced during the principal component analysis. An extensive use of object
score plots and variable loading plots represents the possibility to display and
interpret the most important information in the data matrix. This is the relation
between the objects and the variables. Models with more than two principal
components need 'windows' with higher order components. This is a most powerful
advantage with this analytical method of chemometrics and provides the analyst
with graphical tools that simplify the interpretation of highly complex data sets.
Associations between health outcomes and exposure pattern and occupational
hygiene standard as studied by multivariate methods will be discussed in Example 4.

Sampling errors in occupational hygiene are by far the largest problem when
taking measurements. Variations by factors of 2-3 can be observed for personal
samples on different lapels of the same worker. Larger variations may be seen in
exposure levels, even for time-weighted averages of 8-h sampling. Such variation
may be due to spatial, locational and job type changes. These experimental
variations could well exceed any differences found between factories (Kromhout el
al., 1993). Useful and important correlations may not be derived, but chemometrics
should help in seeing this variability. It is beyond the scope of this introductory
article to discuss this in any detail. However, many samples from each workplace
should at least indicate the dominant characteristics.
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154 E. Bye

THE SIMCA METHOD

A principal component model of a class of objects may be used to examine
whether an unknown object belongs to the class or not. The model is constructed
by a training or calibration set. Any unknown objects included in the calculation
and in the object score plot will show if the class membership is correct. The
exploratory part of the data analysis to establish the training set may be called
unsupervised learning. Application of the model for testing of unknown objects is
called supervised learning. Class boundaries and a modified F-test (based on the
residual variances) can be used to quantify class membership. Furthermore,
separate clusters may be described by disjoint models, and the methodology
includes criteria to evaluate the discrimination power of the variables for the
separation between classes. These ideas were developed as the SIMCA method in
the 1970s (Soft /ndependent Modelling of Class Analogy) by Wold and his group
(Wold and Sjostrom, 1977). It will be beyond the scope of this introductory
article to describe all these features of the SIMCA method in detail. Classification
of human skeletal muscle fibres provides a suitable illustration of the method and
some of the features (Bye et al., 1989). This example has been selected because no
simple and relevant investigation has been reported on a SIMCA application
within occupational hygiene.

<}

Example 2: human skeletal muscle fibres
Human skeletal muscle fibres are normally classified by visual evaluation or by

measurements of the optical density of histochemically stained muscle sections which
is closely correlated to the enzyme activities of the fibres, and is typical for the fibre
types. A data set comprising several stained fibre types has been reanalysed by the
SIMCA method. We would like to consider the following questions: (a) How many
distinct fibre types are present? (b) Which staining techniques are the best? (c) How
many staining techniques are necessary to separate the three fibre types? The data set
contained the same 32 fibres in 12 different thin muscle sections, each section stained
by a different colour technique. Thus altogether 12%-transmission light measure-
ments were used as the variables, 12 for each object (fibre). A principal component
analysis gave a model with two components, accounting for 95% of the variance.
The object score plot is shown in Fig. 10. Three distinct fibre types are easily
recognized (Type I, Type Ila and Type lib) in accordance with the visual inspection.
However, three fibres (Nos 1, 2 and 3 in Fig. 10) deviate somewhat from the main
cluster regions.

Figure 11 shows the corresponding variable loading plot. Except for variables 4,
10 and 11 all the others are important for the two PCs since they are located far out
along the axes. Considering the pattern in Figs 10 and 11 together, we can conclude
that Type I fibres have high values for the variables to the right in the loading plot
(along component 1). Similarly, Type Ila fibres have high values for variables 3, 9
and 8 whereas the opposite is the case for Type lib fibres. Variables 6 and 8 are most
important for component 1 and 2, respectively and the two-dimensional scatter plot
in Fig. 12 illustrates the separation ability of the two variables. This scatter plot
confirms the impact of the variables to the object structure, since the patterns in Figs
10 and 12 are quite similar.
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Fig. 10. Object score plot for the first two principal components, describing 81 and 14% of the variance,
respectively. Three muscles fibre types are recognized, in addition to three separate objects (Nos 1, 2

and 3).
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Fig. 11. Variable loading plot for the first two principal components. The variables are different colouring
techniques for the staining of the muscle fibres.

When we know that object No. 3 (see Fig. 10) belongs to Type I, we can see from
Fig. 12 that the value of variable 8 is somewhat low for this object. This is in
accordance with object No. 3 lying opposite to variable 8 in Fig. 11. From Fig. 11 we
can see that variables 1 and 12 are correlated. So are variables 2, 5, 6 and 7, since
they are located closely to each other in the loading plot. The correlation between
variable 1 and 12 is shown in Fig. 13.

With separate (disjoint) PC models for each fibre type, and class boundaries
associated with each group, outliers may be identified and quantified (Wold et al,
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Fig. 12. Scatter plot of the muscle fibres to illustrate the separation ability of the two colouring techniques,
variables 6 and 8. The variables were selected from the loading plot (Fig 11), as most important for

components 1 and 2, respectively.
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Fig. 13. Scatter plot of variables 1 and 12, to show the correlation as observed in the loading plot in
Fig 11.

1981). Class boundaries are calculated from the residual variance and can be used to
determine whether clusters are 'really separate groups'. Table 2 gives the class
distances (CD) for the three clusters, along with the normalized distances between
the clusters and the three separate objects, see Fig. 10. A class distanced (CD) of 3.0
means that the distances between the classes are three times the mean standard
deviation of the middle point of the classes.

The fibre located between Type Ila and lib (object No. 1 in Fig. 10) was
originally classified as a Type Ila fibre. However, a location between Ila and lib and
outside the class boundaries for the two classes indicates a 'new' fibre type. Actually
a Type Ilab fibre has been suggested by others. The fibre located between Type I and
Type Ila (object No. 2) is actually a fourth type, Type He. It is included in this
example to illustrate the presence of an 'outlier'.
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Table 2. Class distances (CD) and rejection criteria for membership determination. A class distance higher
than 3.0 is considered to be a significant separation. The rejection criteria for 'outlier detection' and the
object distances to the class is based on a simplified F-test. A significance level of P = 0.01 is used for the

class boundaries

Fibre type

I
Ila
lib

Class

Ila

10.6

distance

lib

10.8
6.3

1

39.4
66

136

Object distance

2

23.3
18.8
31.7

3

6 3

Rejection criteria
of the class (for objects)

59
3.6
4.3

Table 3. Discrimination power (DP) of the variables for discrimination
between the classes (fibre types). A numerical value larger than 3.0 is

considered to be appropriate for separation between two classes

Fibre type

I

na

Ila

Variable

7
6
2

DP

30.5
29.1
20.9

lib

Variable

6
7

12
3

12
1

DP

33.3
31 1
21.1
8.9
6.9
6.5

Table 3 refers the discrimination powers (DP) of the variables, which give a
quantitative measure of the separation power between two classes. According to
Wold et al. (1981) a DP of 3.0 is significant to consider the classes as distinct, that is
the variables have significant separation ability. This means that the class distance is
three times the intraclass variation (estimated standard deviation), calculated from
the residual variance of the class. According to Table 3 variables 7, 6 and 3 are the
most appropriate variables to discriminate among the three fibre types. According to
the variable loading plot in Fig. 11, variables 7 and 6 are correlated. As shown in Fig.
15 the two variables 6 and 3 give a good separation between the clusters. In practice
the most important variables may be combined according to loadings and the
discrimination powers to conclude on the most appropriate variables for
discrimination. (The small differences in the loadings between the variable pairs 6
and 8, and 7 and 3 are of no significance here; compare Fig. 12 and Fig. 14.)

PARTIAL LEAST SQUARES (PLS)

Signal processing, experimental design and principal component analysis are
included in chemometrics, although these methods have been well known for
decades. However, along with the increased use of principal component analysis
(PCA) and the development of the SIMCA classification technique, the PLS
method, that is the partial least-squares regression, was introduced (Wold et al.,
1983). This concept was based on the early work of Wold on 'systems under indirect
observation' (1966, 1975, 1982). The technique provides the analyst with a two-block
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Fig. 14. Scatter plot to illustrate the two variables with the largest Discrimination Powers along the first
two principal components.

regression method that is also based on principal component models. However, in
contrast to multiple regression (MR) information of the response variable (to be
predicted) is also taken into account in the construction of the model. If we call the
independent variables the X matrix, similarly to the previous paragraph, the
dependent or response variables are called the Y matrix. In practice, the data set is
organized as two tables, the x and y parameters. Each object is again looked upon as
a ^-dimensional vector, but now with one or more (k) intrinsic properties (the y
parameters), as illustrated in Fig. 15. These may be properties that are difficult,
expensive or time-consuming to measure.

An interdependent principal component model is constructed based on the
known objects, that is the training or the calibration set. The model is optimized to
account for the variance in Y. If there is systematic variation between the variables in
the X and Y matrix, these correlations are built into the PLS model. These
components are 'quite similar' to PCs and may be called PLS components. They are
also linear combinations of the original variables. The predictive ability of the model
is evaluated with a test set and the model is then used to predict the y values of the
unknown objects. Test sets with measured y values are used for comparison with the
predicted y parameters only and not included in the model.

For calibration purposes this technique is called multivariate calibration (Martens
and Naes, 1989). Spectroscopic data from a large spectral range (or the whole
spectrum) are used in the X matrix instead of only one single wavelength. In this
approach PLS may be used to determine the concentrations of one or several
chemical compounds in complex mixtures. Here the traditional univariate
calibration often fails. The training set contains known concentrations, that is the
y values, of the compounds of interest. With one response variable the method is
called PLS 1, whereas PLS2 is the acronym for regression on more than one effect
variable.

Another approach of PLS is the QSAR application, that is the Quantitative
Structure-Activity Relationships. A frequent problem may be to correlate biological
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Fig. 15. The general organization of data matrices in PLS analysis. The X matrix (the measured
independent parameters) and the Y matrix (the dependent parameters to be predicted) are set up in two
blocks. The data set consists of three subgroups of objects: the training set, the test or validation set and
the unknown objects, m objects (the rows) are characterized by p independent variables (the columns),
whereas the effect table (Y) may consist of one or more additional dependent variables (k). The y
parameters of the test set are used for evaluation of the constructed PLS model, y parameters of the

unknown objects (given as ?) are predicted.

activity to chemical properties or to the chemical structure. Physico-chemical
properties of the compounds are introduced as the X matrix whereas the y variables
contain the corresponding biological effect parameters. QSAR studies with PLS have
most frequently been used on drug design and studies of toxic effects in the
environment (Dunn, 1989; Lundstedt, 1991). However, laboratory experiments on
selected assays to elucidate toxic effects in humans have also been investigated by
PLS models (Norden et al., 1978; Wold et al., 1985). A study of health effects
relevant for industrial handling of chemicals was recently published (Eriksson et al.,
1994) and the two applications of PLS, multivariate calibration and QSAR, will be
described in the examples below.

Example 3: quantitative determination of silica mixtures

When we are performing a traditional calibration for quantitative analysis, we
normally apply a so-called univariate regression technique. One instrumental signal
(one variable) from a chemical substance is associated with, for example, its
concentration. This works well with distinct and 'pure' peaks without interferences.
Less distinct spectra, interferences or mixtures ask for more advanced calibration
methods. With the PLS method a large spectral range or the whole spectrum is the
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'signal' that is related to the amount of an unknown compound. This is
accomplished by using the signal strength, for example, the absorbance, at several
wavelengths as x variables in the calibration procedure while the concentrations are
the y variables. Quantitative determination of silica mixtures with infrared
spectroscopy will be used to display the application of a multivariate calibration
strategy (Bjersvik and Bye, 1991; Bye, 1994).

The dust exposure in foundries and refractories is quite complex. The dust may
contain crystalline as well as amorphous modifications of silica and the quantitative
determination can be done with X-ray diffraction (XRD) for quartz and cristobalite
(Altree-Williams, 1977; Bye, 1983) or infrared spectroscopy (i.r.) for crystalline and
amorphous silica (Tuddenham and Lyon, 1960). Mixtures of these silica modifica-
tions may be analysed with the combined XRD-i.r. method (Bye et al., 1980).
However, the XRD instrumentation is expensive and needs highly qualified
laboratory personnel. Thus the application of only i.r. spectroscopy for quantitative
determination of silica mixtures might be advantageous, the method being quick,
simple and performed on a standard laboratory instrument. However, the primary
absorption band of the various silica modifications interferes severely in i.r. as seen
in Fig. 16.

Our standard method with i.r. uses only the absorption band at 800 cm"1 (Bye et
al., 1980), while for the PLS application, the spectral profile was recorded at 10 cm"1

intervals in the spectral range 900-600 cm"1. A calibration set of 18 binary mixtures
of quartz, cristobalite and amorphous SiO2 (0-100%) was prepared by weighing.
One central ternary sample (1/3, 1/3, 1/3) was also included in the calibration set.
The observed %-transmission values were used as the X matrix, whereas the relative
concentrations made up the dependent y parameters. Prior to the PLS calculations a
PCA was performed to inspect the structure of the data set. Two principal

Infrared spectra

900 • 800 700

Wovenumber cm

Fig. 16. Infrared spectra of quartz (Q ), cristobalite (C ) and amorphous silica
(A ). The transmission values are only given for the most interesting region (900-600 cm"1) for

the silica modifications, revealing the severe interference for the primary absorption bands.
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components explained 97% of the variance of the X matrix and the object score plot
is shown in Fig. 17.

The traditional three-component mixture triangle is easily recognized in the
figure, and remember that only the transmission values were used as input
parameters. No direct information about the silica concentrations was introduced
in the PCA calculation! The corresponding variable loading plots are shown in Fig.
18. Without going into details on the interpretation, we can sec that the largest
loadings are located at the wavelengths for the primary silica absorption bands at
750-850 cm . In addition there are large loadings around the secondary bands for
quartz (700 cm ) and cristobalite (620 cm ). This implies that these variables have
the largest influence of the spectral variation between the samples, and that they are
most important for the characterization of the samples.

A PLS model was constructed with the same spectroscopic data as the x
parameters and with the silica concentrations as the response variables. Two
components explained 99.5% of the variance in Y and a set of 'unknown' samples
were then used to test the PLS model, see Table 4.

Figure 19 illustrates the quality of the model, showing the measured (nominal) vs
the predicted quartz content. The results were similar for the other two components.
Therefore, the multivariate approach with PLS applied to i.r. spectroscopy made it
possible to simultaneously determine the concentrations of three interfering
substances with acceptable accuracy.

Example 4: quantitative models for skin corrosion by carboxylic acids
In a recent paper (Eriksson et al., 1994) a search was made for a QSAR-model

to predict the dermal effects of corrosive carboxylic acids. Corrosive chemicals may
induce two types of biological effects: (1) irritant contact dermatitis (skin
irritation); and (2) allergic contact dermatitis (skin sensitization). Furthermore,
skin irritation may be categorized in acute primary irritation, cumulative irritation
or corrosion. According to legislation the compounds are classified in three

Object score plot
0 3

0 2
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0 0

-0 1

-0 2

-0 3

-0 4 -
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o

° C
- 0 . 6 - 0 4 - 0 2 0 0 0 2 0 4

Principal component 1

Fig. 17. Object score plot for the first two principal components (PCI and PC2) for the training set. The
design pattern for a three-component mixture (CM 00%) is recognized with the additional centre mixture
(1/3, 1/3, 1/3) of the three silica components (A = amorphous silica; Q-= quartz; C = cristobalite). See Bye

(1994) for further details.
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Fig. 18. Variable loading plot for (a) the first and (b) the second principal components of the training set
The characteristic (and largest) loadings are located at 800, 700 and 620 cm"1, that is at the most

characteristic silica absorption bands; compare with Fig. 16

categories: strongly, moderately and weakly corrosive, depending upon their
corrosive strength toward epithelium tissue. However, in practical work the
occupational hygienist will observe that classification is difficult owing to lack of
corrosion data. Corrosive properties of diluted solutions of the chemicals are even
less investigated. The aim of the investigation was thus to establish a systematic
way to classify the corrosive chemicals and to predict corrosion properties of
uninvestigated compounds.

The nine physico-chemical properties: molecular weight, melting point, density,
refractive index, pKa (acid constant), log P (octanol-water partition coefficient),
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Table 4. Nominal and predicted compositions of the three-component silica
mixtures for the test samples. A = amorphous silica, Q - quartz, C = cristobalite

(Bye, 1994)

Determined by weighing
Sample A Q C

(wt %)

Predicted by PLS
A Q C

(wt %)

Tl
T2
T3
T4
T5

20.1
50.2
59.7
19.9
20.0

20.5
22.3
20.4
35.0
60.1

59.4
27 5
199
45.1
19.9

17.3
48.5
63.2
15 1
198

21.4
23.1
19.4
36.1
57.2

61.3
28.4
17.4
49.8
22 7

100

V

at

20 -

0 -

- 2 0
100

Measured quartz (%)

Fig. 19. Measured quartz concentration (%) vs predicted quartz concentration (%) for the test set with the
three silica modifications. The prediction is based on a PLS2 model with two components, describing
99.5% of the variance in the composition matrix (Y). The absolute prediction errors, that is the standard
deviations of predictions, are in the range of 1.5-3.0% for the three silica components. This is comparable

with the standard X-ray diffraction and i.r. spectroscopic methods (Bye, 1994).

electronegativity and the energy of the highest occupied and the lowest unoccupied
molecular orbitals were introduced as the X matrix for 45 aliphatic carboxylic acids.
Nine acids were selected as the training set together with a validation set (test set) of
six compounds. One additional test compound outside the domain of the training set
was included to show the ability for the model to operate (predict) outside the
'trained' region. Selection of the other acids in the training and test set was based on
experimental design and PCA, to be representative for the molecular family. These
15 carboxylic acids were tested for cutaneous corrosion on adult rabbits. Each
substance was categorized as corrosive or not, and assigned the lowest observed
effect concentration (LOEQ. A three-component PLS model described 83% of the
biological effect variance. The consecutive application of the model on the test set
represents a necessary evaluation of the model. Figure 20 shows the measured LOEC
values vs the predicted, together with the corresponding values for the training set. A
satisfactory predictive ability of the model is evident from the high correlation in Fig.
20. The final stage in application of the model was to predict the corrosive properties
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- 0 5 0.0 0.5 1.0 1.5 2 0 2.5 3 0 3.5

Observed LOEC

Fig. 20. Observed vs predicted LOEC (lowest observable effect concentration) of the training (o) and test set
(o) for skin corrosion, exerted on rabbits by carboxylic acids The prediction is based on a PLS1 model

with two components (Eriksson et al., 1994).

of the 30, until now untested, carboxylic acids. These results can be used in further
work on corrosive chemicals.

One question is: 'What is the requirement for a new chemical to be included for
valid corrosivity predictions?' The basic idea is that your calibration and test set are
representative for future carboxylic acids. Selection of these sets are therefore very
important. Object scores for new compounds have to be in a certain range—not too
different from the object scores of the calibration set. This is controlled through
PCA. Furthermore, some of the SIMCA techniques (for example, class boundaries
and object residuals) can be used to verify the class membership. In addition, most
chemometric software has outlier warnings during the prediction of new objects.

In general, such quantitative models have several prospects. First of all such
models provide us with a systematic way of classifying chemicals, for example, with
respect to material properties or biological activities. Mathematical and statistical
models used in investigations on biological effects of chemicals may reduce the need
for animal experiments. Furthermore, the application of such models, constructed
through a combined use of experimental design, PCA and PLS, represents an
efficient method for ranking toxic chemicals in a screening phase. Such ranking can
be of great help in deciding which compounds should undergo extensive, expensive
and time-consuming experiments. The work of Jonsson et al. (1989), on a strategy
for ranking toxic chemicals in the environment illustrates how these multivariate
chemometric methods can be combined and used as a systematic approach in the
complex work of hazard reduction.

Associations between occupational hygiene and health data
The QSAR example described above has been selected to illustrate how PLS can

be used to study associations between several x variables and one y variable. This
would be the situation if the foundry data (X matrix) in Example 1 should be
correlated to one health parameter. For foundry workers this could be a respiratory

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/40/2/145/219716 by guest on 20 April 2024



Chemometncs in occupational hygiene 165

effect and the most usual PLS1 technique would be used. Also several y variables
(health effects) can be studied by the same model simultaneously, through the use of
the PLS2 technique. However, no adequate investigations have been reported on the
association between exposure or occupational hygiene data and health effects using
PLS so far.

Nevertheless, multivariate methods other than PLS have been used in various
studies to describe health endpoints in the industry. A comprehensive evaluation of
the health status among workers in the Japanese ceramic industries of different size
was reported by Huang et al. (1993). In a cross-sectional study it was found that the
occupational health status was significantly higher in the large factories than in the
smaller ones. Prevalences of silicosis and tuberculosis were used as the indices for
health status. In addition, several medical screening tests were subjected to principal
component analysis. The high morbidity of silicosis and pulmonary tuberculosis in
smaller companies contributed most to the decline in the overall health level. These
findings were associated with earlier observations on the exposure level for quartz.
High correlations between the most important factors derived from PCA and the
two pulmonary outcomes gave thus indirectly information about the hygienic level.

In a recent study by Tielemans et al. (1994) a canonical correlation analysis was
carried out to study the relationship between a set of organic dust exposure
measurements and a set of ventilatory function variables. The investigation
comprised 390 male workers within grain processing and animal feeding. Increased
organic dust exposure was closely correlated with a decrease in ventilatory functions.
However, an independent effect of overall organic dust exposure and the number
exposure-years was observed on the MEVF curve (maximum expiratory ventilatory
function). The regression method used is somewhat similar although not exactly
identical to PLS.

FOUR LEVELS OF PATTERN RECOGNITION (PARC)

It is very convenient to describe PCA, SIMCA and PLS together in a
presentation like this. The methods are closely related in several ways: (i) the
samples (objects) are looked upon as vectors in the multidimensional variable or
measurement space; (ii) the data set is organized as a data table, including training
set, test set and unknown samples; (iii) principal component models (or closely
related in the case of PLS) are built for extraction of the systematic and correlated
information among the samples; (iv) graphical presentations, through the object
score and the variable loading plots are used for interpretation; and (v) the
philosophy for all three techniques is based on multivariate approaches, handling all
the experimental data simultaneously. The inclusion of one or more dependent
variables in the data treatment, completes the concept of Four Levels of Pattern
Recognition (PARC): Level (1): classify an unknown compound within one of the
present established classes. Level (2): classify an unknown object inside one or
outside all present classes, i.e. an outlier. Level (3): prediction of one dependent
response variable of an unknown object. Level (4): prediction of more than one
response variable (Albano et al., 1978; Wold et al., 1983).

An integrated use of these techniques represents a powerful set of tools for
pattern recognition. In particular, the introduction of various quantitative measures

D
ow

nloaded from
 https://academ

ic.oup.com
/annw

eh/article/40/2/145/219716 by guest on 20 April 2024



166 E. Bye

for the correlations among objects and variables is convenient. This includes class
distances, discrimination power, class membership determination and prediction
power (Wold, 1976; Wold and Sjostrom, 1977; Sharaf et al., 1986). Such a combined
approach is outlined here because questions within the area of occupational hygiene
and health can be partially classification and partially prediction problems. If the
prediction of a dependent variable should be done in a system where there are several
classes of objects, the combined application of SIMCA and PLS can assist the
occupational hygienist substantially. One may first utilize the opportunity to
establish the basic characteristics and structural pattern of the groups of items.
Second, one can develop quantitative relationships between these basic properties
and, for example, the biological effects. These results can finally be connected to the
work place operations.

Models, causality and validation
So far this introduction to chemometric methods has emphasized the advantage

of studying more than one variable at the time. In fact, as many variables as possible,
having a suggested although not definite connection to the problem can be
considered. When combining the formulation of new hypothesis with exploratory
data analysis and mathematical model formulation, there are two important topics
to discuss:

—the difference between a mathematical and mechanistic model understanding;
—the separation (distinction) between causal relations and incidental correla-

tions.
Many scientists stick to the philosophy of studying phenomena based on a
mechanistic and theoretical (mental) understanding of the ongoing processes. This is
possible with 'uni- or oligo-variate' problems or minor fragments on topics that are
well studied and described for a long time. However, for complex problems like: (i)
indoor air quality and health effects; or (ii) mineral fiber properties and lung cancer,
the number of suggested and important variables is quite large. Fundamental
knowledge about the processes is still so scarce that good and comprehensive
mechanistic models are not yet achievable (Austin et al., 1992; Dement, 1990).
Mostly these two complex topics are studied in a confined or limited variable space.
This is probably because it is mentally difficult to handle more than one or a few
variables simultaneously. The final goal of obtaining comprehensive mechanistic
knowledge enforces researchers to look for an explanation based on few variables,
irrespective of how complex and multifactorial the problem is.

Mathematical models from a chemometric approach through experimental
measurements of such complex problems, may however lead to empirical and
practical models. They may not provide us with an easily accessible understanding of
the underlying mechanism. However, we may obtain both important and relevant
qualitative and quantitative information from such models. For many cases this may
be satisfactory, at least in an initial stage, such as the exploratory phase. Such models
might give 'new information' through practical functioning by solving the initial
problem. This in turn may unravel connections that can guide us to a deeper causal
understanding of complex problems. A complex exposure situation may be described
by a mathematical model, involving many work operations, several workroom
characteristics and process factors. Such a model may help the occupational
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hygienist in improving the work environment. This can be done without giving a
mechanistic interpretation of the interplay between all the various factors, the
exposure pattern and the health effects.

However, there are reasons to be cautious in handling many variables during an
'exploratory' phase. If by chance, some variables incidentally should be correlated,
there are possibilities for misinterpretation. Such 'new' exploratory chemometric
findings should only be recognized and accepted as significant evidence after
repeated and properly designed investigations have been performed. Since the main
application is classification or unraveling of general relational trends between the
objects and variables there should be only limited possibilities for serious
misinterpretations. When the techniques are applied to organize and graphically
display the measurements through projections, the inference from statistical artifacts
should be of minor concern. Even occasional and intermediate misinterpretation of
causality in an observed connection should not be a fundamental hindrance for more
exploratory approaches in occupational hygiene studies. However, the quality of the
data is critical under such circumstances.

A critical scientific attitude toward new and unexpected or 'strange' findings are
necessary to warrant that any conclusions have, for example, biological credibility.
On the other hand, a properly functioning quantitative empirical model (such as the
QSAR models), with uncertain causal relations, may still help in the prevention of
future work-related problems. From an empirical model, describing air quality and
health problems, we might predict that a certain class of indoor air characteristics
would impose problems. With critical scientific considerations to these questions,
such work environmental problems may be reduced in the future, considering even
'non-causal models with only empirical functioning'.

However, in order to work with mathematical models for complex exposure
pattern and occupational health effects we have to rely on the quality of the
models. This quality depends on several factors, among which the quality of the
training set is essential. Earlier I emphasized the importance of the test set in
model validation. The use of the test set is the best and only way to validate your
model thoroughly. To avoid biased models and ensure plausible results, quality
control has to be included during the model construction as well. Such validation
can be done with cross-validation (Wold, 1978) or leverage correction (Martens
and Nces, 1989).

It is outside the scope of this introduction to go into details about the procedures
for cross-validation and leverage correction. This brief description is given just to
point to the importance of valid models and how the credibility of the models may be
achieved through standard validation techniques. As already stated, the quality of
the training and test objects is crucial. Whenever possible, experimental design
should be used to obtain representative samples. This means that the samples span
the variation in properties (the measured variables) that can be anticipated for future
samples. In studies where the exposure pattern is correlated to health effects, it is not
always possible to design an exposure situation with large enough variation.
However, one should look for experimental conditions where the actual variables
vary as much as possible and include these 'situations' in the model. A practical
guide for most of the aspects of chemometrics may be found in a recent textbook
published by Esbensen et al. (1994).
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CONCLUDING REMARKS

Since the early 1970s when Svante Wold (University of Umea, Sweden)
introduced the name chemometrics for the first time, the field has developed like a
cascade. Special software, journals, congresses and an increasing amount of
textbooks are indicators of this development. Within the field of occupational
hygiene and health, we should definitely welcome and promote an increased use of
multidimensional philosophy and analytical methods. This is due to the complexity
of the work environment and the correlations between exposure and health effects.
All the measured variables for a large number of samples may be analysed
simultaneously. Data matrices with up to 32 500 x 32 500 elements can easily be
handled by a modern desk-top computer. The dimension of a complex problem can
be reduced to a few principal components. Graphical presentation of the results
offers user friendly interpretation facilities. Issues like indoor air quality and health
effects, fiber properties and fiber toxicities and correlations between chemical
structures and toxic reactions, all connected to exposure at work, should definitely
benefit from a multivariate approach.

Chemometrics being nearly a way of life rather than purely a collection of
powerful methods, offers a bridge for occupational hygienists into a sphere for
multidimensional problem solving. Applying the framework of chemometrics may
increase the exploration of 'The total working environment'. This may be the future
key to solving the general multidimensional problem: what are the most important
variables that relate to the reported health effects?

It is definitely not a question of why multivariate methods should be applied
within the field of occupational hygiene—it is merely a question of how! Hopefully,
chemometrics will increase the consciousness around experimental design and
qualified measurements. Complex systems can be investigated and even latent or
hidden information may be revealed.
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